无监督域自适应的统一加权MMD

Zhansong Ma, Bingrong Xu, Lei Wang, Hanwen Liu, Zhigang Zeng
{"title":"无监督域自适应的统一加权MMD","authors":"Zhansong Ma, Bingrong Xu, Lei Wang, Hanwen Liu, Zhigang Zeng","doi":"10.1109/icaci55529.2022.9837581","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation (UDA) recognizes unlabeled domain data by using the classifier learned from another domain. Previous works mainly focus on domain-level alignment that usually ignores the class-level information, resulting in the samples of different classes being too close to be classified correctly. To tackle this challenge, we design a unified weighted maximum mean discrepancy (MMD) metric method, that measures the differences in empirical distributions of two domains by calculating the weights of different sample pairs adaptively. The unified weighted MMD method is proposed which combines the class-level alignment with domain-level alignment, making full use of intra-domain, inter-domain, intra-class, and inter-class information with adaptive weights, and it is easy to implement. Experiment results demonstrate that our method can obtain superior results from two standard UDA datasets Office-31 and ImageCLEF-DA, compared with other UDA approaches.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Unified Weighted MMD For Unsupervised Domain Adaptation\",\"authors\":\"Zhansong Ma, Bingrong Xu, Lei Wang, Hanwen Liu, Zhigang Zeng\",\"doi\":\"10.1109/icaci55529.2022.9837581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised domain adaptation (UDA) recognizes unlabeled domain data by using the classifier learned from another domain. Previous works mainly focus on domain-level alignment that usually ignores the class-level information, resulting in the samples of different classes being too close to be classified correctly. To tackle this challenge, we design a unified weighted maximum mean discrepancy (MMD) metric method, that measures the differences in empirical distributions of two domains by calculating the weights of different sample pairs adaptively. The unified weighted MMD method is proposed which combines the class-level alignment with domain-level alignment, making full use of intra-domain, inter-domain, intra-class, and inter-class information with adaptive weights, and it is easy to implement. Experiment results demonstrate that our method can obtain superior results from two standard UDA datasets Office-31 and ImageCLEF-DA, compared with other UDA approaches.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无监督域自适应(UDA)利用从其他域学习到的分类器来识别未标记的域数据。以往的工作主要集中在领域级对齐上,往往忽略了类级信息,导致不同类的样本过于接近而无法正确分类。为了解决这一问题,我们设计了一种统一的加权最大平均差异(MMD)度量方法,该方法通过自适应计算不同样本对的权重来度量两个域经验分布的差异。提出了统一的加权MMD方法,将类级对齐与领域级对齐结合起来,充分利用域内、域间、类内、类间的信息和自适应权值,易于实现。实验结果表明,在Office-31和ImageCLEF-DA两个标准UDA数据集上,与其他UDA方法相比,我们的方法可以获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified Weighted MMD For Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) recognizes unlabeled domain data by using the classifier learned from another domain. Previous works mainly focus on domain-level alignment that usually ignores the class-level information, resulting in the samples of different classes being too close to be classified correctly. To tackle this challenge, we design a unified weighted maximum mean discrepancy (MMD) metric method, that measures the differences in empirical distributions of two domains by calculating the weights of different sample pairs adaptively. The unified weighted MMD method is proposed which combines the class-level alignment with domain-level alignment, making full use of intra-domain, inter-domain, intra-class, and inter-class information with adaptive weights, and it is easy to implement. Experiment results demonstrate that our method can obtain superior results from two standard UDA datasets Office-31 and ImageCLEF-DA, compared with other UDA approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1