车载信息系统安全性分析

G. Weigang, Kateryna Komar
{"title":"车载信息系统安全性分析","authors":"G. Weigang, Kateryna Komar","doi":"10.23939/tt2023.01.062","DOIUrl":null,"url":null,"abstract":"The features of the functioning of the on-board information systems of a car are considered. Threats to their security are analyzed, and methods for ensuring information security and functional security of on-board information systems are proposed. The design of road networks in the organization of road traffic is one of the factors in ensuring the functional security of modern intelligent transport systems, that is, compliance with such information security attributes as data confidentiality, integrity, availability, authenticity and novelty of data. The security of on-board vehicle information systems is a critical issue in the modern world, as more and more vehicles are equipped with electronic systems that may be vulnerable to cyber attacks. One of the main challenges of protecting on-board information systems is the wide range of devices and technologies used in modern vehicles. Different systems may have different security requirements and vulnerabilities. They may interact with each other in a complex way. Another challenge is that many of these systems were not designed originally with security in mind. They may lack basic security features such as encryption and authentication and use outdated software and protocols that are vulnerable to known attacks. The main types of attacks and threats to the elements of the transportation system that interact with the VANET were identified to analyze the information security of vehicle in-vehicle systems. Based on the theory of fuzzy sets under conditions of uncertainty and using the Fuzzy Logic Toolbox in the integrated Matlab environment, the level of information security of the OBU-VANET system was modeled. The obtained results allowed us to formulate the degree of information security of vehicle operation elements against unauthorized access to data. The results of the study showed that technical communication systems have the highest security level (> 0.7), and vehicles become the most vulnerable in public places.","PeriodicalId":343801,"journal":{"name":"Transport technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the security of on-board information systems in vehicles\",\"authors\":\"G. Weigang, Kateryna Komar\",\"doi\":\"10.23939/tt2023.01.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The features of the functioning of the on-board information systems of a car are considered. Threats to their security are analyzed, and methods for ensuring information security and functional security of on-board information systems are proposed. The design of road networks in the organization of road traffic is one of the factors in ensuring the functional security of modern intelligent transport systems, that is, compliance with such information security attributes as data confidentiality, integrity, availability, authenticity and novelty of data. The security of on-board vehicle information systems is a critical issue in the modern world, as more and more vehicles are equipped with electronic systems that may be vulnerable to cyber attacks. One of the main challenges of protecting on-board information systems is the wide range of devices and technologies used in modern vehicles. Different systems may have different security requirements and vulnerabilities. They may interact with each other in a complex way. Another challenge is that many of these systems were not designed originally with security in mind. They may lack basic security features such as encryption and authentication and use outdated software and protocols that are vulnerable to known attacks. The main types of attacks and threats to the elements of the transportation system that interact with the VANET were identified to analyze the information security of vehicle in-vehicle systems. Based on the theory of fuzzy sets under conditions of uncertainty and using the Fuzzy Logic Toolbox in the integrated Matlab environment, the level of information security of the OBU-VANET system was modeled. The obtained results allowed us to formulate the degree of information security of vehicle operation elements against unauthorized access to data. The results of the study showed that technical communication systems have the highest security level (> 0.7), and vehicles become the most vulnerable in public places.\",\"PeriodicalId\":343801,\"journal\":{\"name\":\"Transport technologies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/tt2023.01.062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/tt2023.01.062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了车载信息系统的功能特点。分析了机载信息系统的安全威胁,提出了保证机载信息系统信息安全和功能安全的方法。道路交通组织中道路网络的设计是保证现代智能交通系统功能安全的因素之一,即符合数据的保密性、完整性、可用性、真实性和新颖性等信息安全属性。随着越来越多的车辆配备了容易受到网络攻击的电子系统,车载信息系统的安全是现代世界的一个关键问题。保护车载信息系统的主要挑战之一是现代车辆中使用的各种设备和技术。不同的系统可能有不同的安全需求和漏洞。它们可能以一种复杂的方式相互作用。另一个挑战是,许多这些系统最初设计时并没有考虑到安全性。它们可能缺乏基本的安全功能,如加密和身份验证,并且使用过时的软件和协议,容易受到已知攻击。识别了与VANET交互的交通系统要素的主要攻击类型和威胁,分析了车载系统的信息安全。基于不确定条件下的模糊集理论,利用集成的Matlab环境中的模糊逻辑工具箱,对OBU-VANET系统的信息安全级别进行了建模。获得的结果使我们能够制定车辆操作要素的信息安全程度,以防止未经授权的数据访问。研究结果表明,在公共场所,技术通信系统的安全等级最高(> 0.7),车辆成为最脆弱的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the security of on-board information systems in vehicles
The features of the functioning of the on-board information systems of a car are considered. Threats to their security are analyzed, and methods for ensuring information security and functional security of on-board information systems are proposed. The design of road networks in the organization of road traffic is one of the factors in ensuring the functional security of modern intelligent transport systems, that is, compliance with such information security attributes as data confidentiality, integrity, availability, authenticity and novelty of data. The security of on-board vehicle information systems is a critical issue in the modern world, as more and more vehicles are equipped with electronic systems that may be vulnerable to cyber attacks. One of the main challenges of protecting on-board information systems is the wide range of devices and technologies used in modern vehicles. Different systems may have different security requirements and vulnerabilities. They may interact with each other in a complex way. Another challenge is that many of these systems were not designed originally with security in mind. They may lack basic security features such as encryption and authentication and use outdated software and protocols that are vulnerable to known attacks. The main types of attacks and threats to the elements of the transportation system that interact with the VANET were identified to analyze the information security of vehicle in-vehicle systems. Based on the theory of fuzzy sets under conditions of uncertainty and using the Fuzzy Logic Toolbox in the integrated Matlab environment, the level of information security of the OBU-VANET system was modeled. The obtained results allowed us to formulate the degree of information security of vehicle operation elements against unauthorized access to data. The results of the study showed that technical communication systems have the highest security level (> 0.7), and vehicles become the most vulnerable in public places.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of wheel rotation resistance on oscillatory phenomena in steering drive of electric bus with electromechanical amplifier Assessment of the service quality in public transport (analysis of research in Lviv, Ukraine) Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator Impact of pedestrian flows on traffic delays before roundabouts Characteristics of motorization's impact on the urban population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1