高光谱图像分类的尺度-光谱-空间注意网络

Usama Derbashi, E. Aptoula
{"title":"高光谱图像分类的尺度-光谱-空间注意网络","authors":"Usama Derbashi, E. Aptoula","doi":"10.1109/SIU55565.2022.9864719","DOIUrl":null,"url":null,"abstract":"Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification\",\"authors\":\"Usama Derbashi, E. Aptoula\",\"doi\":\"10.1109/SIU55565.2022.9864719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

注意网络使神经网络能够专注于输入信息中最有益的部分。在遥感图像分类的背景下,空间关注网络、光谱关注网络和空间-光谱关注网络的研究已经有所报道。本文提出了一种结合尺度注意模块和空间光谱注意模块的网络。尺度空间是通过α -树生成的,目的是让网络集中在最有用的尺度上。在两个真实的高光谱数据集上进行了测试,取得了性能上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification
Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1