嵌入式CPU-GPU架构的节能查询处理

Xuntao Cheng, Bingsheng He, C. Lau
{"title":"嵌入式CPU-GPU架构的节能查询处理","authors":"Xuntao Cheng, Bingsheng He, C. Lau","doi":"10.1145/2771937.2771939","DOIUrl":null,"url":null,"abstract":"Energy efficiency is a major design and optimization factor for query co-processing of databases in embedded devices. Recently, GPUs of new-generation embedded devices have evolved with the programmability and computational capability for general-purpose applications. Such CPU-GPU architectures offer us opportunities to revisit GPU query co-processing in embedded environments for energy efficiency. In this paper, we experimentally evaluate and analyze the performance and energy consumption of a GPU query co-processor on such hybrid embedded architectures. Specifically, we study four major database operators as micro-benchmarks and evaluate TPC-H queries on CARMA, which has a quad-core ARM Cortex-A9 CPU and a NVIDIA Quadro 1000M GPU. We observe that the CPU delivers both better performance and lower energy consumption than the GPU for simple operators such as selection and aggregation. However, the GPU outperforms the CPU for sort and hash join in terms of both performance and energy consumption. We further show that CPU-GPU query co-processing can be an effective means of energy-efficient query co-processing in embedded systems with proper tuning and optimizations.","PeriodicalId":267524,"journal":{"name":"Proceedings of the 11th International Workshop on Data Management on New Hardware","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Energy-Efficient Query Processing on Embedded CPU-GPU Architectures\",\"authors\":\"Xuntao Cheng, Bingsheng He, C. Lau\",\"doi\":\"10.1145/2771937.2771939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is a major design and optimization factor for query co-processing of databases in embedded devices. Recently, GPUs of new-generation embedded devices have evolved with the programmability and computational capability for general-purpose applications. Such CPU-GPU architectures offer us opportunities to revisit GPU query co-processing in embedded environments for energy efficiency. In this paper, we experimentally evaluate and analyze the performance and energy consumption of a GPU query co-processor on such hybrid embedded architectures. Specifically, we study four major database operators as micro-benchmarks and evaluate TPC-H queries on CARMA, which has a quad-core ARM Cortex-A9 CPU and a NVIDIA Quadro 1000M GPU. We observe that the CPU delivers both better performance and lower energy consumption than the GPU for simple operators such as selection and aggregation. However, the GPU outperforms the CPU for sort and hash join in terms of both performance and energy consumption. We further show that CPU-GPU query co-processing can be an effective means of energy-efficient query co-processing in embedded systems with proper tuning and optimizations.\",\"PeriodicalId\":267524,\"journal\":{\"name\":\"Proceedings of the 11th International Workshop on Data Management on New Hardware\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2771937.2771939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771937.2771939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

能效是嵌入式设备中数据库查询协同处理的主要设计和优化因素。近年来,新一代嵌入式设备的gpu已经发展到具有通用应用的可编程性和计算能力。这样的CPU-GPU架构为我们提供了在嵌入式环境中重新审视GPU查询协同处理以提高能效的机会。在本文中,我们对这种混合嵌入式架构下的GPU查询协处理器的性能和能耗进行了实验评估和分析。具体来说,我们研究了四种主要的数据库操作作为微基准,并在CARMA上评估TPC-H查询,CARMA具有四核ARM Cortex-A9 CPU和NVIDIA Quadro 1000M GPU。我们观察到,对于简单的操作,如选择和聚合,CPU提供了比GPU更好的性能和更低的能耗。然而,GPU在排序和哈希连接方面的性能和能耗都优于CPU。通过适当的调优和优化,我们进一步证明了CPU-GPU查询协同处理可以成为嵌入式系统中节能查询协同处理的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficient Query Processing on Embedded CPU-GPU Architectures
Energy efficiency is a major design and optimization factor for query co-processing of databases in embedded devices. Recently, GPUs of new-generation embedded devices have evolved with the programmability and computational capability for general-purpose applications. Such CPU-GPU architectures offer us opportunities to revisit GPU query co-processing in embedded environments for energy efficiency. In this paper, we experimentally evaluate and analyze the performance and energy consumption of a GPU query co-processor on such hybrid embedded architectures. Specifically, we study four major database operators as micro-benchmarks and evaluate TPC-H queries on CARMA, which has a quad-core ARM Cortex-A9 CPU and a NVIDIA Quadro 1000M GPU. We observe that the CPU delivers both better performance and lower energy consumption than the GPU for simple operators such as selection and aggregation. However, the GPU outperforms the CPU for sort and hash join in terms of both performance and energy consumption. We further show that CPU-GPU query co-processing can be an effective means of energy-efficient query co-processing in embedded systems with proper tuning and optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward GPUs being mainstream in analytic processing: An initial argument using simple scan-aggregate queries Applying HTM to an OLTP System: No Free Lunch TLB misses: The Missing Issue of Adaptive Radix Tree? The Serial Safety Net: Efficient Concurrency Control on Modern Hardware Scaling the Memory Power Wall With DRAM-Aware Data Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1