体育分析的实时占有关系检测

Yinda Xu, Yong-gang Peng
{"title":"体育分析的实时占有关系检测","authors":"Yinda Xu, Yong-gang Peng","doi":"10.23919/CCC50068.2020.9189516","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel algorithm for relationship detection. This task involves the tracking of a target object and human pose. The target object is tracked with a visual object tracker. The human poses are estimated via a keypoint detector while the person identities are preserved with a simple yet effective IoU tracker. Finally, a possessing relationship inference is made based on the position information of the tracked target and humans. This algorithm meets the real-time requirement by running at over 20 FPS and we give an application illustration in sports analytics.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-Time Possessing Relationship Detection for Sports Analytics\",\"authors\":\"Yinda Xu, Yong-gang Peng\",\"doi\":\"10.23919/CCC50068.2020.9189516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel algorithm for relationship detection. This task involves the tracking of a target object and human pose. The target object is tracked with a visual object tracker. The human poses are estimated via a keypoint detector while the person identities are preserved with a simple yet effective IoU tracker. Finally, a possessing relationship inference is made based on the position information of the tracked target and humans. This algorithm meets the real-time requirement by running at over 20 FPS and we give an application illustration in sports analytics.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9189516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的关系检测算法。这项任务包括跟踪目标物体和人体姿势。目标对象用可视对象跟踪器跟踪。通过关键点检测器估计人体姿势,同时使用简单而有效的IoU跟踪器保存人的身份。最后,根据被跟踪目标与人的位置信息进行占有关系推理。该算法以每秒20帧以上的速度满足实时性要求,并给出了在体育分析中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Possessing Relationship Detection for Sports Analytics
In this paper, we propose a novel algorithm for relationship detection. This task involves the tracking of a target object and human pose. The target object is tracked with a visual object tracker. The human poses are estimated via a keypoint detector while the person identities are preserved with a simple yet effective IoU tracker. Finally, a possessing relationship inference is made based on the position information of the tracked target and humans. This algorithm meets the real-time requirement by running at over 20 FPS and we give an application illustration in sports analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1