{"title":"预后模型评估指标","authors":"Shashvat Prakash, Katarina Vuckovic, S. Amin","doi":"10.1109/AERO55745.2023.10115952","DOIUrl":null,"url":null,"abstract":"Prognostic analytic models have become a viable way to reduce operational interruptions when sufficient timely data is available and the resultant model is a good predictor. This paper describes a set of evaluation metrics which can characterize model performance as a degradation estimate and as a decision enabler. The model accuracy over time is assessed against a correlation with the remaining useful life. This yields both a prediction accuracy and confidence interval. The decision can be based on the level of confidence around the prediction, which is based on both how far into the future the event is predicted and how well the current health and its deterioration is estimated. With an effective means of evaluating prognostic models, better benchmarks can be established to communicate model effectiveness and appropriately schedule routine service.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prognostic Model Evaluation Metrics\",\"authors\":\"Shashvat Prakash, Katarina Vuckovic, S. Amin\",\"doi\":\"10.1109/AERO55745.2023.10115952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prognostic analytic models have become a viable way to reduce operational interruptions when sufficient timely data is available and the resultant model is a good predictor. This paper describes a set of evaluation metrics which can characterize model performance as a degradation estimate and as a decision enabler. The model accuracy over time is assessed against a correlation with the remaining useful life. This yields both a prediction accuracy and confidence interval. The decision can be based on the level of confidence around the prediction, which is based on both how far into the future the event is predicted and how well the current health and its deterioration is estimated. With an effective means of evaluating prognostic models, better benchmarks can be established to communicate model effectiveness and appropriately schedule routine service.\",\"PeriodicalId\":344285,\"journal\":{\"name\":\"2023 IEEE Aerospace Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO55745.2023.10115952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prognostic analytic models have become a viable way to reduce operational interruptions when sufficient timely data is available and the resultant model is a good predictor. This paper describes a set of evaluation metrics which can characterize model performance as a degradation estimate and as a decision enabler. The model accuracy over time is assessed against a correlation with the remaining useful life. This yields both a prediction accuracy and confidence interval. The decision can be based on the level of confidence around the prediction, which is based on both how far into the future the event is predicted and how well the current health and its deterioration is estimated. With an effective means of evaluating prognostic models, better benchmarks can be established to communicate model effectiveness and appropriately schedule routine service.