基于新用户隐式信息和多属性评价矩阵的冷启动推荐算法

Hang Yin, G. Chang, Xingwei Wang
{"title":"基于新用户隐式信息和多属性评价矩阵的冷启动推荐算法","authors":"Hang Yin, G. Chang, Xingwei Wang","doi":"10.1109/HIS.2009.184","DOIUrl":null,"url":null,"abstract":"Traditional collaborative filtering recommendation algorithms face the cold-start problem. A collaborative filtering recommendation algorithm based on the implicit information of the new users and multi-attribute rating matrix is proposed to solve the problem. The implicit information of the new users is collected as the first-hand interest information. It is combined with other rating information to create a User-Item Rating Matrix (UIRM). Singular Value Decomposition is used to reduce the dimensionality of the UIRM, resulting in the initial neighbor set for target users and a new user-item rating matrix. The user ratings are mapped to the relevant item attributes and the user attributes respectively to generate a User-Item Attribute Rating Matrix and a User Attribute-Item Attribute Rating Matrix (UAIARM). The attributes of new items and UAIARM are matched to find the N users with the highest match degrees as the target of the new items. The attributes of the new users are matched with UAIARM to find the N items with the highest match degrees as the recommended items. Experiment results validate the feasibility of the algorithm.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Cold-Start Recommendation Algorithm Based on New User's Implicit Information and Multi-attribute Rating Matrix\",\"authors\":\"Hang Yin, G. Chang, Xingwei Wang\",\"doi\":\"10.1109/HIS.2009.184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional collaborative filtering recommendation algorithms face the cold-start problem. A collaborative filtering recommendation algorithm based on the implicit information of the new users and multi-attribute rating matrix is proposed to solve the problem. The implicit information of the new users is collected as the first-hand interest information. It is combined with other rating information to create a User-Item Rating Matrix (UIRM). Singular Value Decomposition is used to reduce the dimensionality of the UIRM, resulting in the initial neighbor set for target users and a new user-item rating matrix. The user ratings are mapped to the relevant item attributes and the user attributes respectively to generate a User-Item Attribute Rating Matrix and a User Attribute-Item Attribute Rating Matrix (UAIARM). The attributes of new items and UAIARM are matched to find the N users with the highest match degrees as the target of the new items. The attributes of the new users are matched with UAIARM to find the N items with the highest match degrees as the recommended items. Experiment results validate the feasibility of the algorithm.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

传统的协同过滤推荐算法面临冷启动问题。针对这一问题,提出了一种基于新用户隐式信息和多属性评价矩阵的协同过滤推荐算法。收集新用户的隐性信息作为第一手兴趣信息。它与其他评级信息相结合以创建用户-项目评级矩阵(UIRM)。使用奇异值分解对UIRM进行降维,得到目标用户的初始邻居集和新的用户-物品评级矩阵。将用户评分分别映射到相关的物品属性和用户属性,生成用户-物品属性评分矩阵和用户属性-物品属性评分矩阵(UAIARM)。将新项目的属性与UAIARM进行匹配,找出匹配度最高的N个用户作为新项目的目标。将新用户的属性与UAIARM进行匹配,找出匹配度最高的N个项目作为推荐项目。实验结果验证了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cold-Start Recommendation Algorithm Based on New User's Implicit Information and Multi-attribute Rating Matrix
Traditional collaborative filtering recommendation algorithms face the cold-start problem. A collaborative filtering recommendation algorithm based on the implicit information of the new users and multi-attribute rating matrix is proposed to solve the problem. The implicit information of the new users is collected as the first-hand interest information. It is combined with other rating information to create a User-Item Rating Matrix (UIRM). Singular Value Decomposition is used to reduce the dimensionality of the UIRM, resulting in the initial neighbor set for target users and a new user-item rating matrix. The user ratings are mapped to the relevant item attributes and the user attributes respectively to generate a User-Item Attribute Rating Matrix and a User Attribute-Item Attribute Rating Matrix (UAIARM). The attributes of new items and UAIARM are matched to find the N users with the highest match degrees as the target of the new items. The attributes of the new users are matched with UAIARM to find the N items with the highest match degrees as the recommended items. Experiment results validate the feasibility of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Intelligent Authorization Agent Model in Grid Backing up Truck Control Automatically Based on LOS Study on Generation Companies' Bidding Strategy Based on Hybrid Intelligent Method Sentence Features Fusion for Text Summarization Using Fuzzy Logic Available Bandwidth Estimation in IEEE 802.11 Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1