基于云计算的猕猴桃物联网运输保质期评估

J. Khoo, Solomon Haw, Nicholas Su, Shakeeb Mulaafer
{"title":"基于云计算的猕猴桃物联网运输保质期评估","authors":"J. Khoo, Solomon Haw, Nicholas Su, Shakeeb Mulaafer","doi":"10.1109/IICAIET51634.2021.9573602","DOIUrl":null,"url":null,"abstract":"The outlook of maintaining higher quality perishable food sparks a lot of interest in the agriculture business. Food security is an important aspect to meet the demand of the growing population. For instance, postharvest losses amount to 1.3 billion tons a year which amounts to 33 percent of production as stated by the Food and Agriculture Department of United States. Real time monitoring of the supply chain can provide insight on perishable food to better handle pricing and allow respective stakeholders to act accordingly to maintain quality standards. Shelf life is described as the duration of a product to be safely consumed by the microbiological standards and retaining a desired sensory, physico-chemical and nutritional quality. Arrhenius equation is commonly used in the assessment of food quality albeit time consuming. The proposed approach with multiple linear regression (MLR) model is designed to estimate the lowest possible shelf life outcome given the monitoring condition during transportation.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kiwi Fruit IoT Shelf Life Estimation During Transportation with Cloud Computing\",\"authors\":\"J. Khoo, Solomon Haw, Nicholas Su, Shakeeb Mulaafer\",\"doi\":\"10.1109/IICAIET51634.2021.9573602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outlook of maintaining higher quality perishable food sparks a lot of interest in the agriculture business. Food security is an important aspect to meet the demand of the growing population. For instance, postharvest losses amount to 1.3 billion tons a year which amounts to 33 percent of production as stated by the Food and Agriculture Department of United States. Real time monitoring of the supply chain can provide insight on perishable food to better handle pricing and allow respective stakeholders to act accordingly to maintain quality standards. Shelf life is described as the duration of a product to be safely consumed by the microbiological standards and retaining a desired sensory, physico-chemical and nutritional quality. Arrhenius equation is commonly used in the assessment of food quality albeit time consuming. The proposed approach with multiple linear regression (MLR) model is designed to estimate the lowest possible shelf life outcome given the monitoring condition during transportation.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保持高质量易腐食品的前景激发了人们对农业业务的极大兴趣。粮食安全是满足不断增长的人口需求的一个重要方面。例如,据美国粮食和农业部称,每年收获后的损失达13亿吨,占产量的33%。对供应链的实时监控可以提供对易腐食品的洞察,以更好地处理定价,并允许相关利益相关者采取相应行动,以保持质量标准。保质期被描述为产品在微生物标准下安全食用并保持所需的感官、物理化学和营养质量的持续时间。阿伦尼乌斯方程是食品质量评价的常用方法,但耗时较长。该方法采用多元线性回归(MLR)模型来估计在运输过程中给定的监测条件下可能的最低保质期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kiwi Fruit IoT Shelf Life Estimation During Transportation with Cloud Computing
The outlook of maintaining higher quality perishable food sparks a lot of interest in the agriculture business. Food security is an important aspect to meet the demand of the growing population. For instance, postharvest losses amount to 1.3 billion tons a year which amounts to 33 percent of production as stated by the Food and Agriculture Department of United States. Real time monitoring of the supply chain can provide insight on perishable food to better handle pricing and allow respective stakeholders to act accordingly to maintain quality standards. Shelf life is described as the duration of a product to be safely consumed by the microbiological standards and retaining a desired sensory, physico-chemical and nutritional quality. Arrhenius equation is commonly used in the assessment of food quality albeit time consuming. The proposed approach with multiple linear regression (MLR) model is designed to estimate the lowest possible shelf life outcome given the monitoring condition during transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach Eye-Tank: Monitoring and Predicting Water and pH Level in Smart Farming Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network Multi-Scale Texture Analysis For Finger Vein Anti-Spoofing Utilization of Response Surface Methodology and Regression Model in Optimizing Bioretention Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1