有预算的强盗

Richard Combes, Chong Jiang, R. Srikant
{"title":"有预算的强盗","authors":"Richard Combes, Chong Jiang, R. Srikant","doi":"10.1145/2796314.2745847","DOIUrl":null,"url":null,"abstract":"Motivated by online advertising applications, we consider a version of the classical multi-armed bandit problem where there is a cost associated with pulling each arm, and a corresponding budget which limits the number of times that an arm can be pulled. We derive regret bounds on the expected reward in such a bandit problem using a modification of the well-known upper confidence bound algorithm UCB1.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Bandits with budgets\",\"authors\":\"Richard Combes, Chong Jiang, R. Srikant\",\"doi\":\"10.1145/2796314.2745847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by online advertising applications, we consider a version of the classical multi-armed bandit problem where there is a cost associated with pulling each arm, and a corresponding budget which limits the number of times that an arm can be pulled. We derive regret bounds on the expected reward in such a bandit problem using a modification of the well-known upper confidence bound algorithm UCB1.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2796314.2745847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2796314.2745847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在在线广告应用的激励下,我们考虑了经典的多臂强盗问题的一个版本,在这个版本中,拉动每只手臂都有成本,相应的预算限制了每只手臂可以被拉动的次数。我们利用对已知的上置信度界算法UCB1的改进,导出了这类盗匪问题期望报酬的遗憾界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bandits with budgets
Motivated by online advertising applications, we consider a version of the classical multi-armed bandit problem where there is a cost associated with pulling each arm, and a corresponding budget which limits the number of times that an arm can be pulled. We derive regret bounds on the expected reward in such a bandit problem using a modification of the well-known upper confidence bound algorithm UCB1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1