一种可变形模型自动初始化的新方案

Weijia Shen, A. Kassim
{"title":"一种可变形模型自动初始化的新方案","authors":"Weijia Shen, A. Kassim","doi":"10.1109/ICIP.2007.4380011","DOIUrl":null,"url":null,"abstract":"This paper presents a novel scheme for automatic initialization for all types of deformable models. Our method is able to automatically generate a close-to-boundary initialization which is independent of the subsequent segmentation process. Therefore, our method enables different types of deformable models achieve more accurate and robust results. Topographic independent component analysis (TICA) based feature extraction technique is presented for learning a representation from a set of un-labeled image patches. During learning, a topographic map of basis components emerge. An intelligent contour generation procedure is also proposed. Experimental results on abdominal CT images demonstrate the potential of our approach.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A New Scheme for Automatic Initialization of Deformable Models\",\"authors\":\"Weijia Shen, A. Kassim\",\"doi\":\"10.1109/ICIP.2007.4380011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel scheme for automatic initialization for all types of deformable models. Our method is able to automatically generate a close-to-boundary initialization which is independent of the subsequent segmentation process. Therefore, our method enables different types of deformable models achieve more accurate and robust results. Topographic independent component analysis (TICA) based feature extraction technique is presented for learning a representation from a set of un-labeled image patches. During learning, a topographic map of basis components emerge. An intelligent contour generation procedure is also proposed. Experimental results on abdominal CT images demonstrate the potential of our approach.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4380011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的可变形模型自动初始化方案。我们的方法能够自动生成一个独立于后续分割过程的接近边界的初始化。因此,我们的方法可以使不同类型的可变形模型获得更准确和鲁棒的结果。提出了一种基于地形独立分量分析(TICA)的特征提取技术,用于从一组未标记的图像斑块中学习表征。在学习过程中,一个基本成分的地形图出现了。提出了一种智能轮廓生成方法。腹部CT图像的实验结果证明了我们方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Scheme for Automatic Initialization of Deformable Models
This paper presents a novel scheme for automatic initialization for all types of deformable models. Our method is able to automatically generate a close-to-boundary initialization which is independent of the subsequent segmentation process. Therefore, our method enables different types of deformable models achieve more accurate and robust results. Topographic independent component analysis (TICA) based feature extraction technique is presented for learning a representation from a set of un-labeled image patches. During learning, a topographic map of basis components emerge. An intelligent contour generation procedure is also proposed. Experimental results on abdominal CT images demonstrate the potential of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1