即时混合现实照明从休闲扫描

Thomas Richter-Trummer, Denis Kalkofen, Jinwoo Park, D. Schmalstieg
{"title":"即时混合现实照明从休闲扫描","authors":"Thomas Richter-Trummer, Denis Kalkofen, Jinwoo Park, D. Schmalstieg","doi":"10.1109/ISMAR.2016.18","DOIUrl":null,"url":null,"abstract":"We present a method for recovering both incident lighting and surface materials from casually scanned geometry. By casual, we mean a rapid and potentially noisy scanning procedure of unmodified and uninstrumented scenes with a commodity RGB-D sensor. In other words, unlike reconstruction procedures which require careful preparations in a laboratory environment, our method works with input that can be obtained by consumer users. To ensure a robust procedure, we segment the reconstructed geometry into surfaces with homogeneous material properties and compute the radiance transfer on these segments. With this input, we solve the inverse rendering problem of factorization into lighting and material properties using an iterative optimization in spherical harmonics form. This allows us to account for self-shadowing and recover specular properties. The resulting data can be used to generate a wide range of mixed reality applications, including the rendering of synthetic objects with matching lighting into a given scene, but also re-rendering the scene (or a part of it) with new lighting. We show the robustness of our approach with real and synthetic examples under a variety of lighting conditions and compare them with ground truth data.","PeriodicalId":146808,"journal":{"name":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Instant Mixed Reality Lighting from Casual Scanning\",\"authors\":\"Thomas Richter-Trummer, Denis Kalkofen, Jinwoo Park, D. Schmalstieg\",\"doi\":\"10.1109/ISMAR.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for recovering both incident lighting and surface materials from casually scanned geometry. By casual, we mean a rapid and potentially noisy scanning procedure of unmodified and uninstrumented scenes with a commodity RGB-D sensor. In other words, unlike reconstruction procedures which require careful preparations in a laboratory environment, our method works with input that can be obtained by consumer users. To ensure a robust procedure, we segment the reconstructed geometry into surfaces with homogeneous material properties and compute the radiance transfer on these segments. With this input, we solve the inverse rendering problem of factorization into lighting and material properties using an iterative optimization in spherical harmonics form. This allows us to account for self-shadowing and recover specular properties. The resulting data can be used to generate a wide range of mixed reality applications, including the rendering of synthetic objects with matching lighting into a given scene, but also re-rendering the scene (or a part of it) with new lighting. We show the robustness of our approach with real and synthetic examples under a variety of lighting conditions and compare them with ground truth data.\",\"PeriodicalId\":146808,\"journal\":{\"name\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

我们提出了一种从随机扫描几何中恢复入射光和表面材料的方法。通过随意,我们指的是使用商用RGB-D传感器对未经修改和未仪表化的场景进行快速且可能有噪声的扫描过程。换句话说,与需要在实验室环境中仔细准备的重建程序不同,我们的方法可以使用消费者用户可以获得的输入。为了确保程序的鲁棒性,我们将重建的几何形状分割成具有均匀材料属性的表面,并计算这些部分上的辐射传递。有了这个输入,我们使用球面谐波形式的迭代优化来解决光照和材料属性分解的逆渲染问题。这允许我们考虑自阴影和恢复镜面属性。生成的数据可用于生成广泛的混合现实应用,包括在给定场景中渲染具有匹配照明的合成对象,但也可以使用新的照明重新渲染场景(或其中的一部分)。我们用各种光照条件下的真实和合成示例展示了我们的方法的鲁棒性,并将它们与地面真实数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instant Mixed Reality Lighting from Casual Scanning
We present a method for recovering both incident lighting and surface materials from casually scanned geometry. By casual, we mean a rapid and potentially noisy scanning procedure of unmodified and uninstrumented scenes with a commodity RGB-D sensor. In other words, unlike reconstruction procedures which require careful preparations in a laboratory environment, our method works with input that can be obtained by consumer users. To ensure a robust procedure, we segment the reconstructed geometry into surfaces with homogeneous material properties and compute the radiance transfer on these segments. With this input, we solve the inverse rendering problem of factorization into lighting and material properties using an iterative optimization in spherical harmonics form. This allows us to account for self-shadowing and recover specular properties. The resulting data can be used to generate a wide range of mixed reality applications, including the rendering of synthetic objects with matching lighting into a given scene, but also re-rendering the scene (or a part of it) with new lighting. We show the robustness of our approach with real and synthetic examples under a variety of lighting conditions and compare them with ground truth data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of using Augmented Reality on Textbook Support for Learners of Different Learning Styles Practical and Precise Projector-Camera Calibration Augmented Reality 3D Discrepancy Check in Industrial Applications Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose Estimation Analysis of Medium Wrap Freehand Virtual Object Grasping in Exocentric Mixed Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1