具有小随机输入数据的抛物型偏微分方程的椭圆重构和后验误差估计

N. Shravani, G. Reddy
{"title":"具有小随机输入数据的抛物型偏微分方程的椭圆重构和后验误差估计","authors":"N. Shravani, G. Reddy","doi":"10.23967/admos.2023.028","DOIUrl":null,"url":null,"abstract":"Parabolic partial differential equations (PDEs) with small random input data appear in a wide range of physical and real-world applications, for instance, in glaciology. In this work, we propose and analyze residual-based a posteriori error estimates for such equations in the L 2 P (Ω; L ∞ (0 , T ; L 2 ( D )))-norm, where (Ω , F , P ) is a complete probability space, D is the physical domain, T > 0 is the final time. To this end, we apply the perturbation technique to deal with uncertainty [2019, Arch. Comput. Methods Eng., 26, pp. 1313-1377]. In view of this technique, solving a PDE with small random input data is equivalent to solving decoupled deterministic problems. To approximate solution for these problems, we employ finite element method for the physical space approximation and backward Euler time-stepping scheme for time discretization. To obtain optimality in space, we employ the elliptic reconstruction operator [2003, SIAM J. Numer. Anal., 41, pp. 1585-1594]. The results could be seen as a generalization of the work presented in [2006, Math. Comput., 75, pp. 1627-1658] for the deterministic parabolic PDEs to the parabolic PDE with small uncertainties. Numerical investigations confirm the theoretical findings.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic reconstruction and a posteriori error estimates for the parabolic partial differential equations with small random input data\",\"authors\":\"N. Shravani, G. Reddy\",\"doi\":\"10.23967/admos.2023.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parabolic partial differential equations (PDEs) with small random input data appear in a wide range of physical and real-world applications, for instance, in glaciology. In this work, we propose and analyze residual-based a posteriori error estimates for such equations in the L 2 P (Ω; L ∞ (0 , T ; L 2 ( D )))-norm, where (Ω , F , P ) is a complete probability space, D is the physical domain, T > 0 is the final time. To this end, we apply the perturbation technique to deal with uncertainty [2019, Arch. Comput. Methods Eng., 26, pp. 1313-1377]. In view of this technique, solving a PDE with small random input data is equivalent to solving decoupled deterministic problems. To approximate solution for these problems, we employ finite element method for the physical space approximation and backward Euler time-stepping scheme for time discretization. To obtain optimality in space, we employ the elliptic reconstruction operator [2003, SIAM J. Numer. Anal., 41, pp. 1585-1594]. The results could be seen as a generalization of the work presented in [2006, Math. Comput., 75, pp. 1627-1658] for the deterministic parabolic PDEs to the parabolic PDE with small uncertainties. Numerical investigations confirm the theoretical findings.\",\"PeriodicalId\":414984,\"journal\":{\"name\":\"XI International Conference on Adaptive Modeling and Simulation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XI International Conference on Adaptive Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/admos.2023.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有小随机输入数据的抛物型偏微分方程(PDEs)广泛出现在物理和现实世界的应用中,例如冰川学。在这项工作中,我们提出并分析了基于残差的后验误差估计在l2 P (Ω;L∞(0,t;L 2 (D)))-范数,其中(Ω, F, P)为完全概率空间,D为物理域,T > 0为最终时间。为此,我们应用摄动技术来处理不确定性[2019,Arch。第一版。Eng方法。书刊,26,第1313-1377页]。鉴于这种技术,求解具有小随机输入数据的PDE等价于求解解耦的确定性问题。为了逼近这些问题的解,我们采用有限元法进行物理空间逼近,并采用向后欧拉时间步进格式进行时间离散。为了获得空间上的最优性,我们使用椭圆重构算子[2003,SIAM J. number]。分析的, 41,第1585-1594页]。这些结果可以被看作是对[2006,Math]中提出的工作的概括。第一版。确定性抛物型偏微分方程与小不确定性抛物型偏微分方程的比较[j]。数值研究证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elliptic reconstruction and a posteriori error estimates for the parabolic partial differential equations with small random input data
Parabolic partial differential equations (PDEs) with small random input data appear in a wide range of physical and real-world applications, for instance, in glaciology. In this work, we propose and analyze residual-based a posteriori error estimates for such equations in the L 2 P (Ω; L ∞ (0 , T ; L 2 ( D )))-norm, where (Ω , F , P ) is a complete probability space, D is the physical domain, T > 0 is the final time. To this end, we apply the perturbation technique to deal with uncertainty [2019, Arch. Comput. Methods Eng., 26, pp. 1313-1377]. In view of this technique, solving a PDE with small random input data is equivalent to solving decoupled deterministic problems. To approximate solution for these problems, we employ finite element method for the physical space approximation and backward Euler time-stepping scheme for time discretization. To obtain optimality in space, we employ the elliptic reconstruction operator [2003, SIAM J. Numer. Anal., 41, pp. 1585-1594]. The results could be seen as a generalization of the work presented in [2006, Math. Comput., 75, pp. 1627-1658] for the deterministic parabolic PDEs to the parabolic PDE with small uncertainties. Numerical investigations confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1