基于峰度的噪声环境下目标检测方法

Alexander Schmidt, Christoph Rugheimer, F. Particke, T. Mahr, Holger Appel, Hans-Georg Kolle
{"title":"基于峰度的噪声环境下目标检测方法","authors":"Alexander Schmidt, Christoph Rugheimer, F. Particke, T. Mahr, Holger Appel, Hans-Georg Kolle","doi":"10.1109/IRS.2016.7497291","DOIUrl":null,"url":null,"abstract":"This report proposes a detection method based on using kurtosis and maximum amplitude information, both extracted from the spectral domain. At the end we face a classification problem which is solved by introducing a linear decision boundary. This new method is proved to result into overall good and stable detection results.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kurtosis based approach for detection of targets in noise\",\"authors\":\"Alexander Schmidt, Christoph Rugheimer, F. Particke, T. Mahr, Holger Appel, Hans-Georg Kolle\",\"doi\":\"10.1109/IRS.2016.7497291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report proposes a detection method based on using kurtosis and maximum amplitude information, both extracted from the spectral domain. At the end we face a classification problem which is solved by introducing a linear decision boundary. This new method is proved to result into overall good and stable detection results.\",\"PeriodicalId\":346680,\"journal\":{\"name\":\"2016 17th International Radar Symposium (IRS)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2016.7497291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于从谱域提取的峰度和最大振幅信息的检测方法。最后,我们面临一个分类问题,该问题通过引入线性决策边界来解决。结果表明,该方法总体上具有较好的稳定检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kurtosis based approach for detection of targets in noise
This report proposes a detection method based on using kurtosis and maximum amplitude information, both extracted from the spectral domain. At the end we face a classification problem which is solved by introducing a linear decision boundary. This new method is proved to result into overall good and stable detection results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Doppler spectrum segmentation of radar sea clutter by mean-shift and information geometry metric Carrier- and Doppler-tunable FPGA-based active reflector for radar calibration Experimental measurement of time difference of arrival Investigation on radar-based applications for mini-UAS and MAVs Analysis of the objects images on the sea using Dempster-Shafer theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1