基于特征的恶意URL及多类分类攻击类型检测

D. Patil, J. Patil
{"title":"基于特征的恶意URL及多类分类攻击类型检测","authors":"D. Patil, J. Patil","doi":"10.22042/ISECURE.2018.0.0.1","DOIUrl":null,"url":null,"abstract":"Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking. Existing approaches have focused on binary detection i.e., either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This paper proposes a methodology to detect malicious URLs and the type of attacks based on multi-class classification. In this work, we propose 42 new features of spam, phishing and malware URLs. These features are not considered in the earlier studies for malicious URLs detection and attack types identification. Binary and multi-class dataset is constructed using 49935 malicious and benign URLs. It consists of 26041 benign and 23894 malicious URLs containing 11297 malware, 8976 phishing and 3621 spam URLs. To evaluate the proposed approach, the state-of-the-art supervised batch and online machine learning classifiers are used. Experiments are performed on the binary and multi-class dataset using the aforementioned machine learning classifiers. It is found that, confidence weighted learning classifier achieves the best 98.44% average detection accuracy with 1.56% error-rate in the multi-class setting and 99.86% detection accuracy with negligible error-rate of 0.14% in binary setting using our proposed URL features.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification\",\"authors\":\"D. Patil, J. Patil\",\"doi\":\"10.22042/ISECURE.2018.0.0.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking. Existing approaches have focused on binary detection i.e., either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This paper proposes a methodology to detect malicious URLs and the type of attacks based on multi-class classification. In this work, we propose 42 new features of spam, phishing and malware URLs. These features are not considered in the earlier studies for malicious URLs detection and attack types identification. Binary and multi-class dataset is constructed using 49935 malicious and benign URLs. It consists of 26041 benign and 23894 malicious URLs containing 11297 malware, 8976 phishing and 3621 spam URLs. To evaluate the proposed approach, the state-of-the-art supervised batch and online machine learning classifiers are used. Experiments are performed on the binary and multi-class dataset using the aforementioned machine learning classifiers. It is found that, confidence weighted learning classifier achieves the best 98.44% average detection accuracy with 1.56% error-rate in the multi-class setting and 99.86% detection accuracy with negligible error-rate of 0.14% in binary setting using our proposed URL features.\",\"PeriodicalId\":436674,\"journal\":{\"name\":\"ISC Int. J. Inf. Secur.\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISC Int. J. Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22042/ISECURE.2018.0.0.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2018.0.0.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

目前,恶意url是企业、社交网络、网上银行的常见威胁。现有的方法侧重于二进制检测,即URL是恶意的还是良性的。很少有文献关注恶意url及其攻击类型的检测。因此,有必要了解攻击类型并采取有效的对策。本文提出了一种基于多类分类的恶意url和攻击类型检测方法。在这项工作中,我们提出了42个垃圾邮件、网络钓鱼和恶意软件url的新功能。在早期的恶意url检测和攻击类型识别研究中,没有考虑到这些特征。二进制和多类数据集是使用49935个恶意和良性url构建的。它由26041个良性网址和23894个恶意网址组成,其中包含11297个恶意网址、8976个钓鱼网址和3621个垃圾网址。为了评估所提出的方法,使用了最先进的监督批处理和在线机器学习分类器。使用上述机器学习分类器在二元和多类数据集上进行了实验。研究发现,在多类设置下,置信度加权学习分类器的平均检测准确率为98.44%,错误率为1.56%;在二元设置下,置信度加权学习分类器的平均检测准确率为99.86%,错误率为0.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking. Existing approaches have focused on binary detection i.e., either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This paper proposes a methodology to detect malicious URLs and the type of attacks based on multi-class classification. In this work, we propose 42 new features of spam, phishing and malware URLs. These features are not considered in the earlier studies for malicious URLs detection and attack types identification. Binary and multi-class dataset is constructed using 49935 malicious and benign URLs. It consists of 26041 benign and 23894 malicious URLs containing 11297 malware, 8976 phishing and 3621 spam URLs. To evaluate the proposed approach, the state-of-the-art supervised batch and online machine learning classifiers are used. Experiments are performed on the binary and multi-class dataset using the aforementioned machine learning classifiers. It is found that, confidence weighted learning classifier achieves the best 98.44% average detection accuracy with 1.56% error-rate in the multi-class setting and 99.86% detection accuracy with negligible error-rate of 0.14% in binary setting using our proposed URL features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1