小面积比例估计的贝叶斯空间模型

Fas Moura
{"title":"小面积比例估计的贝叶斯空间模型","authors":"Fas Moura","doi":"10.1191/1471082x02st032oa","DOIUrl":null,"url":null,"abstract":"This article presents a logistic hierarchical model approach for small area prediction of proportions, taking into account both possible spatial and unstructured heterogeneity effects. The posterior distributions of the proportion predictors are obtained via Markov Chain Monte Carlo methods. This automatically takes into account the extra uncertainty associated with the hyperparameters. The procedures are applied to a real data set and comparisons are made under several settings, including a quite general logistic hierarchical model with spatial structure plus unstructured heterogeneity for small area effects. A model selection criterion based on the Expected Prediction Deviance is proposed. Its utility for selecting among competitive models in the small area prediction context is examined.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Bayesian spatial models for small area estimation of proportions\",\"authors\":\"Fas Moura\",\"doi\":\"10.1191/1471082x02st032oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a logistic hierarchical model approach for small area prediction of proportions, taking into account both possible spatial and unstructured heterogeneity effects. The posterior distributions of the proportion predictors are obtained via Markov Chain Monte Carlo methods. This automatically takes into account the extra uncertainty associated with the hyperparameters. The procedures are applied to a real data set and comparisons are made under several settings, including a quite general logistic hierarchical model with spatial structure plus unstructured heterogeneity for small area effects. A model selection criterion based on the Expected Prediction Deviance is proposed. Its utility for selecting among competitive models in the small area prediction context is examined.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082x02st032oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st032oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种考虑可能的空间和非结构异质性效应的小面积比例预测逻辑层次模型方法。通过马尔可夫链蒙特卡罗方法得到了比例预测因子的后验分布。这将自动考虑与超参数相关的额外不确定性。这些程序应用于实际数据集,并在几种设置下进行了比较,包括具有空间结构和小区域效应的非结构化异质性的相当一般的逻辑分层模型。提出了一种基于预期预测偏差的模型选择准则。研究了它在小区域预测环境下对竞争模型进行选择的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian spatial models for small area estimation of proportions
This article presents a logistic hierarchical model approach for small area prediction of proportions, taking into account both possible spatial and unstructured heterogeneity effects. The posterior distributions of the proportion predictors are obtained via Markov Chain Monte Carlo methods. This automatically takes into account the extra uncertainty associated with the hyperparameters. The procedures are applied to a real data set and comparisons are made under several settings, including a quite general logistic hierarchical model with spatial structure plus unstructured heterogeneity for small area effects. A model selection criterion based on the Expected Prediction Deviance is proposed. Its utility for selecting among competitive models in the small area prediction context is examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1