插电式混合动力汽车数据驱动的预测能源管理策略

Jürgen Lohrer, M. Förth, M. Lienkamp
{"title":"插电式混合动力汽车数据驱动的预测能源管理策略","authors":"Jürgen Lohrer, M. Förth, M. Lienkamp","doi":"10.1109/ICMSC.2017.7959490","DOIUrl":null,"url":null,"abstract":"Plug-In Hybrid Electric Vehicles show great potential for decreasing the fuel consumption on specified routes. However, in many cases the trip destination or the distance until the next charge is unknown for the vehicle. This paper presents a data-driven, online energy management strategy that is based on a trip and speed profile prediction for a receding horizon, which takes personal points of interest or upcoming charging stations into consideration. Pontryagin's Minimum Principle including a reduced shooting algorithm is applied to optimize the vehicle state. We evaluated the method for multiple trips of varying length and expect an estimated fuel saving of 8.0% compared to a non-predictive approach.","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A data-driven predictive energy management strategy for plug-in hybrid vehicles\",\"authors\":\"Jürgen Lohrer, M. Förth, M. Lienkamp\",\"doi\":\"10.1109/ICMSC.2017.7959490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plug-In Hybrid Electric Vehicles show great potential for decreasing the fuel consumption on specified routes. However, in many cases the trip destination or the distance until the next charge is unknown for the vehicle. This paper presents a data-driven, online energy management strategy that is based on a trip and speed profile prediction for a receding horizon, which takes personal points of interest or upcoming charging stations into consideration. Pontryagin's Minimum Principle including a reduced shooting algorithm is applied to optimize the vehicle state. We evaluated the method for multiple trips of varying length and expect an estimated fuel saving of 8.0% compared to a non-predictive approach.\",\"PeriodicalId\":356055,\"journal\":{\"name\":\"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSC.2017.7959490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

插电式混合动力汽车在减少特定路线上的燃料消耗方面显示出巨大的潜力。然而,在许多情况下,车辆的旅行目的地或距离直到下一次充电是未知的。本文提出了一种数据驱动的在线能源管理策略,该策略基于对后退地平线的行程和速度剖面预测,将个人兴趣点或即将到来的充电站考虑在内。采用庞特里亚金最小值原理,结合减少射击算法对车辆状态进行优化。我们对不同长度的多次行程进行了评估,预计与非预测方法相比,该方法可节省8.0%的燃油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A data-driven predictive energy management strategy for plug-in hybrid vehicles
Plug-In Hybrid Electric Vehicles show great potential for decreasing the fuel consumption on specified routes. However, in many cases the trip destination or the distance until the next charge is unknown for the vehicle. This paper presents a data-driven, online energy management strategy that is based on a trip and speed profile prediction for a receding horizon, which takes personal points of interest or upcoming charging stations into consideration. Pontryagin's Minimum Principle including a reduced shooting algorithm is applied to optimize the vehicle state. We evaluated the method for multiple trips of varying length and expect an estimated fuel saving of 8.0% compared to a non-predictive approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of normal and abnormal ECG signals based on their PQRST intervals Accurate model reduction of large scale systems using adaptive multi-objective particle swarm optimization algorithm Chattering-free sliding mode control for strict-feedback nonlinear systems using back-stepping technique Microwave CVD deposition and properties of nano / microcrystalline diamond multilayer coatings on tungsten carbide cutting tools A comparative study of two methods for forward kinematics and Jacobian matrix determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1