量化理论和EC-CELP在低比特率下的优势

M. Foodeei, E. Dubois
{"title":"量化理论和EC-CELP在低比特率下的优势","authors":"M. Foodeei, E. Dubois","doi":"10.1109/WITS.1994.513914","DOIUrl":null,"url":null,"abstract":"The goal of this work is to analyze the advantages of the recently introduced entropy-constrained code-excited linear predictive (EC-CELP) quantization. The analysis is at low rates in comparison with other EC quantization schemes. Based on N-th order rate-distortion function (RDF), EC quantization theory, and empirical methods, RDF memory gain and empirical space-filling gain (dimensionality N) at low bit rates are defined and calculated. These gains categorize and help us analyze and compare the available coding gains for various EC coders for a given rate and delay (N).","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantization theory and EC-CELP advantages at low bit rates\",\"authors\":\"M. Foodeei, E. Dubois\",\"doi\":\"10.1109/WITS.1994.513914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is to analyze the advantages of the recently introduced entropy-constrained code-excited linear predictive (EC-CELP) quantization. The analysis is at low rates in comparison with other EC quantization schemes. Based on N-th order rate-distortion function (RDF), EC quantization theory, and empirical methods, RDF memory gain and empirical space-filling gain (dimensionality N) at low bit rates are defined and calculated. These gains categorize and help us analyze and compare the available coding gains for various EC coders for a given rate and delay (N).\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是分析最近引入的熵约束码激发线性预测(EC-CELP)量化的优点。与其他EC量化方案相比,分析的速率较低。基于N阶率失真函数(RDF)、EC量化理论和经验方法,定义并计算了低比特率下的RDF存储增益和经验空间填充增益(N维)。这些增益分类并帮助我们分析和比较给定速率和延迟(N)下各种EC编码器的可用编码增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantization theory and EC-CELP advantages at low bit rates
The goal of this work is to analyze the advantages of the recently introduced entropy-constrained code-excited linear predictive (EC-CELP) quantization. The analysis is at low rates in comparison with other EC quantization schemes. Based on N-th order rate-distortion function (RDF), EC quantization theory, and empirical methods, RDF memory gain and empirical space-filling gain (dimensionality N) at low bit rates are defined and calculated. These gains categorize and help us analyze and compare the available coding gains for various EC coders for a given rate and delay (N).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1