利用测井数据进行岩石单元分类的机器学习过程比较

V. Carreira, C. P. Neto, R. Bijani
{"title":"利用测井数据进行岩石单元分类的机器学习过程比较","authors":"V. Carreira, C. P. Neto, R. Bijani","doi":"10.3997/2214-4609.201801520","DOIUrl":null,"url":null,"abstract":"Summary This work aims to define a comparison between a Kohonen SOM, an euclidean and a mahalanobean classificators. This comparison uses two well log data from a synthetic syneclises sedimentary basin type. It is remarkable that the Mahalanobis classifier produced a higher error when compared to the Euclidean classifier and the SOM. The SOM presented better results for the two synthetic examples, with an error of 0.7% for the first well and 1.5% for the second. In contrast, Mahalanobis and Euclidean classifiers presented an error of 18.3% and 1.7% respectively for the first well and 11.3% and 6% for the second.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Machine Learning Processes for Classification of Rock Units Using Well Log Data\",\"authors\":\"V. Carreira, C. P. Neto, R. Bijani\",\"doi\":\"10.3997/2214-4609.201801520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This work aims to define a comparison between a Kohonen SOM, an euclidean and a mahalanobean classificators. This comparison uses two well log data from a synthetic syneclises sedimentary basin type. It is remarkable that the Mahalanobis classifier produced a higher error when compared to the Euclidean classifier and the SOM. The SOM presented better results for the two synthetic examples, with an error of 0.7% for the first well and 1.5% for the second. In contrast, Mahalanobis and Euclidean classifiers presented an error of 18.3% and 1.7% respectively for the first well and 11.3% and 6% for the second.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201801520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201801520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在定义Kohonen SOM,欧几里得和mahalanobean分类器之间的比较。该对比使用了合成合成沉积盆地类型的两套测井数据。值得注意的是,与欧几里得分类器和SOM相比,马氏分类器产生了更高的误差。SOM在两口合成井中表现出了更好的结果,第一口井的误差为0.7%,第二口井的误差为1.5%。相比之下,Mahalanobis和Euclidean分类器对第一口井的误差分别为18.3%和1.7%,对第二口井的误差分别为11.3%和6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Machine Learning Processes for Classification of Rock Units Using Well Log Data
Summary This work aims to define a comparison between a Kohonen SOM, an euclidean and a mahalanobean classificators. This comparison uses two well log data from a synthetic syneclises sedimentary basin type. It is remarkable that the Mahalanobis classifier produced a higher error when compared to the Euclidean classifier and the SOM. The SOM presented better results for the two synthetic examples, with an error of 0.7% for the first well and 1.5% for the second. In contrast, Mahalanobis and Euclidean classifiers presented an error of 18.3% and 1.7% respectively for the first well and 11.3% and 6% for the second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield Petroleum Exploration Prospect of the Area Longkou 7-6, Bohai Bay Basin, Offshore China Structure Preserving Regularization for Multitrace Sparse Deconvolution Private Equity Funding the Future of the North Sea? – Siccar Point Energy Case Study Dynamics and Evolution of Growth Faults - Implications on Stratigraphic Geometries and Facies Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1