EAGER:使用知识图谱进行可解释的问题回答

Andrew Chai, Alireza Vezvaei, Lukasz Golab, M. Kargar, D. Srivastava, Jaroslaw Szlichta, Morteza Zihayat
{"title":"EAGER:使用知识图谱进行可解释的问题回答","authors":"Andrew Chai, Alireza Vezvaei, Lukasz Golab, M. Kargar, D. Srivastava, Jaroslaw Szlichta, Morteza Zihayat","doi":"10.1145/3594778.3594877","DOIUrl":null,"url":null,"abstract":"We present EAGER: a tool for answering questions expressed in natural language. Core to EAGER is a modular pipeline for generating a knowledge graph from raw text without human intervention. Notably, EAGER uses the knowledge graph to answer questions and to explain the reasoning behind the derivation of answers. Our demonstration will showcase both the automated knowledge graph generation pipeline and the explainable question answering functionality. Lastly, we outline open problems and directions for future work.","PeriodicalId":371215,"journal":{"name":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EAGER: Explainable Question Answering Using Knowledge Graphs\",\"authors\":\"Andrew Chai, Alireza Vezvaei, Lukasz Golab, M. Kargar, D. Srivastava, Jaroslaw Szlichta, Morteza Zihayat\",\"doi\":\"10.1145/3594778.3594877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present EAGER: a tool for answering questions expressed in natural language. Core to EAGER is a modular pipeline for generating a knowledge graph from raw text without human intervention. Notably, EAGER uses the knowledge graph to answer questions and to explain the reasoning behind the derivation of answers. Our demonstration will showcase both the automated knowledge graph generation pipeline and the explainable question answering functionality. Lastly, we outline open problems and directions for future work.\",\"PeriodicalId\":371215,\"journal\":{\"name\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3594778.3594877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594778.3594877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出EAGER:一个回答用自然语言表达的问题的工具。EAGER的核心是一个模块化管道,用于在没有人工干预的情况下从原始文本生成知识图。值得注意的是,EAGER使用知识图来回答问题并解释推导答案背后的推理。我们的演示将展示自动知识图生成管道和可解释的问答功能。最后,我们概述了有待解决的问题和未来工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EAGER: Explainable Question Answering Using Knowledge Graphs
We present EAGER: a tool for answering questions expressed in natural language. Core to EAGER is a modular pipeline for generating a knowledge graph from raw text without human intervention. Notably, EAGER uses the knowledge graph to answer questions and to explain the reasoning behind the derivation of answers. Our demonstration will showcase both the automated knowledge graph generation pipeline and the explainable question answering functionality. Lastly, we outline open problems and directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Better Distributed Graph Query Planning With Scouting Queries Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models Future-Time Temporal Path Queries Going with the Flow: Real-Time Max-Flow on Asynchronous Dynamic Graphs The Commercial Side of Graph Analytics: Big Uses, Big Mistakes, Big Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1