博客观点检索的组合查询扩展技术

S. Momtazi, Stefan Kazalski, D. Klakow
{"title":"博客观点检索的组合查询扩展技术","authors":"S. Momtazi, Stefan Kazalski, D. Klakow","doi":"10.1109/ISDA.2009.196","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the the role of the retrieval component in an TREC style opinion question answering system. Since blog retrieval differs from traditional ad-hoc document retrieval, we need to work on dedicated retrieval methods. In particular we focus on a new query expansion technique to retrieve people’s opinions from blog posts. We propose a combined approach for expanding queries while considering two aspects: finding more relevant data, and finding more opinionative data. We introduce a method to select opinion bearing terms for query expansion based on a chi-squared test and use this new query expansion to combine it in a liner weighting scheme with the original query terms and relevant feedback terms from web. We report our experiments on the TREC 2006 and TREC 2007 queries from the blog retrieval track. The results show that the methods investigated here enhanced mean average precision of document retrieval from 17.91% to 25.20% on TREC 2006 and from 22.28% to 32.61% on TREC 2007 queries.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Combined Query Expansion Technique for Retrieving Opinions from Blogs\",\"authors\":\"S. Momtazi, Stefan Kazalski, D. Klakow\",\"doi\":\"10.1109/ISDA.2009.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the the role of the retrieval component in an TREC style opinion question answering system. Since blog retrieval differs from traditional ad-hoc document retrieval, we need to work on dedicated retrieval methods. In particular we focus on a new query expansion technique to retrieve people’s opinions from blog posts. We propose a combined approach for expanding queries while considering two aspects: finding more relevant data, and finding more opinionative data. We introduce a method to select opinion bearing terms for query expansion based on a chi-squared test and use this new query expansion to combine it in a liner weighting scheme with the original query terms and relevant feedback terms from web. We report our experiments on the TREC 2006 and TREC 2007 queries from the blog retrieval track. The results show that the methods investigated here enhanced mean average precision of document retrieval from 17.91% to 25.20% on TREC 2006 and from 22.28% to 32.61% on TREC 2007 queries.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了检索组件在TREC风格意见问答系统中的作用。由于博客检索不同于传统的临时文档检索,我们需要研究专用的检索方法。我们特别关注一种新的查询扩展技术,用于从博客文章中检索人们的观点。我们提出了一种扩展查询的组合方法,同时考虑两个方面:寻找更多的相关数据和寻找更多的意见数据。我们引入了一种基于卡方检验的选择意见承载词进行查询扩展的方法,并使用这种新的查询扩展将其与原始查询词和来自web的相关反馈词以线性加权方式组合在一起。我们报告了我们在博客检索轨道上的TREC 2006和TREC 2007查询上的实验。结果表明,本文研究的方法将TREC 2006的平均检索精度从17.91%提高到25.20%,将TREC 2007的平均检索精度从22.28%提高到32.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Combined Query Expansion Technique for Retrieving Opinions from Blogs
In this paper, we discuss the the role of the retrieval component in an TREC style opinion question answering system. Since blog retrieval differs from traditional ad-hoc document retrieval, we need to work on dedicated retrieval methods. In particular we focus on a new query expansion technique to retrieve people’s opinions from blog posts. We propose a combined approach for expanding queries while considering two aspects: finding more relevant data, and finding more opinionative data. We introduce a method to select opinion bearing terms for query expansion based on a chi-squared test and use this new query expansion to combine it in a liner weighting scheme with the original query terms and relevant feedback terms from web. We report our experiments on the TREC 2006 and TREC 2007 queries from the blog retrieval track. The results show that the methods investigated here enhanced mean average precision of document retrieval from 17.91% to 25.20% on TREC 2006 and from 22.28% to 32.61% on TREC 2007 queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1