旅行商问题的无参数粒子群算法分析

C. Bagavathi, S. Padmapriya, H. Mangalam
{"title":"旅行商问题的无参数粒子群算法分析","authors":"C. Bagavathi, S. Padmapriya, H. Mangalam","doi":"10.1109/ICACTA54488.2022.9753618","DOIUrl":null,"url":null,"abstract":"Evolutionary Algorithms (EA) are standard search mechanisms that use Natural Selection and Survival of the Best as the fundamental algorithm progressing mechanism. The parameterless portfolio is a special technique designed to resolve various categories of problems without any prior requirement of parameter setting. This technique involves an increase in computational effort that can be considered acceptable. In this work, parameterless swarm algorithm using the method of Particle Swarm Optimization has been defined for the application of Traveling Salesman Problem. The performance of the algorithm through the application of parameterless portfolio has been analysed and it can be deduced that the effort of making the Evolutionary Process parameterless can be justified through the benefits discussed in this work.","PeriodicalId":345370,"journal":{"name":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Parameterless Particle Swarm Algorithm for Traveling Salesman Problem\",\"authors\":\"C. Bagavathi, S. Padmapriya, H. Mangalam\",\"doi\":\"10.1109/ICACTA54488.2022.9753618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary Algorithms (EA) are standard search mechanisms that use Natural Selection and Survival of the Best as the fundamental algorithm progressing mechanism. The parameterless portfolio is a special technique designed to resolve various categories of problems without any prior requirement of parameter setting. This technique involves an increase in computational effort that can be considered acceptable. In this work, parameterless swarm algorithm using the method of Particle Swarm Optimization has been defined for the application of Traveling Salesman Problem. The performance of the algorithm through the application of parameterless portfolio has been analysed and it can be deduced that the effort of making the Evolutionary Process parameterless can be justified through the benefits discussed in this work.\",\"PeriodicalId\":345370,\"journal\":{\"name\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTA54488.2022.9753618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTA54488.2022.9753618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进化算法(EA)是一种以自然选择和优胜劣汰为基本算法推进机制的标准搜索机制。无参数组合是一种不需要预先设定参数就能解决各类问题的特殊技术。这种技术涉及到计算工作量的增加,这是可以接受的。本文定义了一种基于粒子群优化方法的无参数群算法,用于求解旅行商问题。通过对无参数组合的应用,分析了该算法的性能,并通过本文讨论的收益推断出使进化过程无参数化的努力是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Parameterless Particle Swarm Algorithm for Traveling Salesman Problem
Evolutionary Algorithms (EA) are standard search mechanisms that use Natural Selection and Survival of the Best as the fundamental algorithm progressing mechanism. The parameterless portfolio is a special technique designed to resolve various categories of problems without any prior requirement of parameter setting. This technique involves an increase in computational effort that can be considered acceptable. In this work, parameterless swarm algorithm using the method of Particle Swarm Optimization has been defined for the application of Traveling Salesman Problem. The performance of the algorithm through the application of parameterless portfolio has been analysed and it can be deduced that the effort of making the Evolutionary Process parameterless can be justified through the benefits discussed in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building Dynamic permutation based Privacy Preservation Model with Block Chain Technology for IoT Healthcare Sector DCNET: A Novel Implementation of Gastric Cancer Detection System through Deep Learning Convolution Networks Customer Segmentation Based on Sentimental Analysis Pigment Epithelial Detachment Detection: A Review of Imaging Techniques and Algorithms Soft Computing based Brain Tumor Categorization with Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1