{"title":"一种(N-1)弹性分布式终端检测算法","authors":"T. Lai, Li-Fen Wu","doi":"10.1109/SPDP.1992.242734","DOIUrl":null,"url":null,"abstract":"The authors propose a fault-tolerant algorithm for termination detection that can tolerate any number of stop failures. This algorithm improves on existing ones in many aspects, including worst-case message complexity, average-case message complexity and storage overhead. Most important, it runs as efficiently as the best non-fault-tolerant algorithm available if no process fails during the computation, and incurs only a reasonable amount of cost for each process failure that actually occurs. The main idea of the algorithm is a barrier set at a particular process. It is possible that other termination detection algorithms can be made fault-tolerant using similar techniques.<<ETX>>","PeriodicalId":265469,"journal":{"name":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"An (N-1)-resilient algorithm for distributed termination detection\",\"authors\":\"T. Lai, Li-Fen Wu\",\"doi\":\"10.1109/SPDP.1992.242734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a fault-tolerant algorithm for termination detection that can tolerate any number of stop failures. This algorithm improves on existing ones in many aspects, including worst-case message complexity, average-case message complexity and storage overhead. Most important, it runs as efficiently as the best non-fault-tolerant algorithm available if no process fails during the computation, and incurs only a reasonable amount of cost for each process failure that actually occurs. The main idea of the algorithm is a barrier set at a particular process. It is possible that other termination detection algorithms can be made fault-tolerant using similar techniques.<<ETX>>\",\"PeriodicalId\":265469,\"journal\":{\"name\":\"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPDP.1992.242734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPDP.1992.242734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An (N-1)-resilient algorithm for distributed termination detection
The authors propose a fault-tolerant algorithm for termination detection that can tolerate any number of stop failures. This algorithm improves on existing ones in many aspects, including worst-case message complexity, average-case message complexity and storage overhead. Most important, it runs as efficiently as the best non-fault-tolerant algorithm available if no process fails during the computation, and incurs only a reasonable amount of cost for each process failure that actually occurs. The main idea of the algorithm is a barrier set at a particular process. It is possible that other termination detection algorithms can be made fault-tolerant using similar techniques.<>