使用TMS从具有异常的数据中自动提取交互式规则

T. Yamazaki
{"title":"使用TMS从具有异常的数据中自动提取交互式规则","authors":"T. Yamazaki","doi":"10.1109/TAI.1990.130316","DOIUrl":null,"url":null,"abstract":"A method for eliciting interactive rules from data with exceptions is described. This method consists of the following three steps: create a hypothesis set (rule candidates); remove exceptional data; and choose the appropriate hypothesis. For the knowledge elicitation procedure, a TMS (truth maintenance system) is useful in choosing an appropriate hypothesis and detecting exceptional data candidates. The advantage in using TMS is that rules can be incrementally elicited from the data. The validity of this method is evaluated using a simple system which elicits rules about chemical reactions from a practical chemical reaction database. A comparison of results for this method and a statistical method shows that it is more useful in eliciting interactive rules.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic elicitation of interactive rules from data with exceptions using TMS\",\"authors\":\"T. Yamazaki\",\"doi\":\"10.1109/TAI.1990.130316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for eliciting interactive rules from data with exceptions is described. This method consists of the following three steps: create a hypothesis set (rule candidates); remove exceptional data; and choose the appropriate hypothesis. For the knowledge elicitation procedure, a TMS (truth maintenance system) is useful in choosing an appropriate hypothesis and detecting exceptional data candidates. The advantage in using TMS is that rules can be incrementally elicited from the data. The validity of this method is evaluated using a simple system which elicits rules about chemical reactions from a practical chemical reaction database. A comparison of results for this method and a statistical method shows that it is more useful in eliciting interactive rules.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了一种从具有异常的数据中引出交互规则的方法。该方法包括以下三个步骤:创建假设集(规则候选);删除异常数据;然后选择合适的假设。对于知识启发过程,TMS(真理维护系统)在选择适当的假设和检测异常候选数据方面是有用的。使用TMS的优点是可以从数据中增量地得出规则。用一个简单的系统从一个实际的化学反应数据库中推导出化学反应的规律,评价了该方法的有效性。将该方法与统计方法的结果进行了比较,结果表明该方法在导出交互规则方面更有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic elicitation of interactive rules from data with exceptions using TMS
A method for eliciting interactive rules from data with exceptions is described. This method consists of the following three steps: create a hypothesis set (rule candidates); remove exceptional data; and choose the appropriate hypothesis. For the knowledge elicitation procedure, a TMS (truth maintenance system) is useful in choosing an appropriate hypothesis and detecting exceptional data candidates. The advantage in using TMS is that rules can be incrementally elicited from the data. The validity of this method is evaluated using a simple system which elicits rules about chemical reactions from a practical chemical reaction database. A comparison of results for this method and a statistical method shows that it is more useful in eliciting interactive rules.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1