基于YOLOV5的单级无人机检测与分类:拼接数据增强和PANet

Fardad Dadboud, Vaibhav Patel, Varun Mehta, M. Bolic, I. Mantegh
{"title":"基于YOLOV5的单级无人机检测与分类:拼接数据增强和PANet","authors":"Fardad Dadboud, Vaibhav Patel, Varun Mehta, M. Bolic, I. Mantegh","doi":"10.1109/AVSS52988.2021.9663841","DOIUrl":null,"url":null,"abstract":"In Drone-vs-Bird Detection Challenge in conjunction with the 4th International Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques at IEEE AVSS 2021, we proposed a YOLOV5-based object detection model for small UAV detection and classification. YOLOV5 leverages PANet neck and mosaic augmentation which help in improving detection of small objects. We have combined the challenge dataset with one of the publicly available UAV air to air dataset having complex background and lighting conditions for training the model. The proposed approach achieved 0.96 Recall, $0.98 mAP_{0.5}$, and $0.71 mAP_{0.5:0.95}$ on the 10% randomly sampled dataset from the whole dataset.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Single-Stage UAV Detection and Classification with YOLOV5: Mosaic Data Augmentation and PANet\",\"authors\":\"Fardad Dadboud, Vaibhav Patel, Varun Mehta, M. Bolic, I. Mantegh\",\"doi\":\"10.1109/AVSS52988.2021.9663841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Drone-vs-Bird Detection Challenge in conjunction with the 4th International Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques at IEEE AVSS 2021, we proposed a YOLOV5-based object detection model for small UAV detection and classification. YOLOV5 leverages PANet neck and mosaic augmentation which help in improving detection of small objects. We have combined the challenge dataset with one of the publicly available UAV air to air dataset having complex background and lighting conditions for training the model. The proposed approach achieved 0.96 Recall, $0.98 mAP_{0.5}$, and $0.71 mAP_{0.5:0.95}$ on the 10% randomly sampled dataset from the whole dataset.\",\"PeriodicalId\":246327,\"journal\":{\"name\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS52988.2021.9663841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

结合IEEE AVSS 2021第四届小型无人机监视、检测和对抗技术国际研讨会,我们提出了一种基于yolov5的小型无人机目标检测模型,用于小型无人机的检测和分类。YOLOV5利用PANet颈部和马赛克增强,有助于提高对小物体的检测。我们将挑战数据集与一个公开可用的无人机空对空数据集相结合,该数据集具有复杂的背景和照明条件,用于训练模型。该方法在整个数据集中随机抽取10%的数据集上实现了0.96 Recall, $0.98 mAP_{0.5}$和$0.71 mAP_{0.5:0.95}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Stage UAV Detection and Classification with YOLOV5: Mosaic Data Augmentation and PANet
In Drone-vs-Bird Detection Challenge in conjunction with the 4th International Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques at IEEE AVSS 2021, we proposed a YOLOV5-based object detection model for small UAV detection and classification. YOLOV5 leverages PANet neck and mosaic augmentation which help in improving detection of small objects. We have combined the challenge dataset with one of the publicly available UAV air to air dataset having complex background and lighting conditions for training the model. The proposed approach achieved 0.96 Recall, $0.98 mAP_{0.5}$, and $0.71 mAP_{0.5:0.95}$ on the 10% randomly sampled dataset from the whole dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry-Based Person Re-Identification in Fisheye Stereo On the Performance of Crowd-Specific Detectors in Multi-Pedestrian Tracking ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera A Fire Detection Model Based on Tiny-YOLOv3 with Hyperparameters Improvement A Splittable DNN-Based Object Detector for Edge-Cloud Collaborative Real-Time Video Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1