基于模型的锂离子电池电压和充电状态估计方法

Milad Andalibi, S. Madani, C. Ziebert, F. Naseri, Mojtaba Hajihosseini
{"title":"基于模型的锂离子电池电压和充电状态估计方法","authors":"Milad Andalibi, S. Madani, C. Ziebert, F. Naseri, Mojtaba Hajihosseini","doi":"10.1109/iSPEC54162.2022.10032998","DOIUrl":null,"url":null,"abstract":"Electric vehicles are equipped with a large number of lithium-ion battery cells. To achieve superior performance and guarantee safety and longevity, there is a fundamental requirement for a Battery Management System (BMS). In the BMS, accurate prediction of the State-of-Charge (SOC) is a crucial task. The SOC information is needed for monitoring, controlling, and protecting the battery, e.g. to avoid hazardous over-charging or over-discharging. Nonetheless, the SOC is an internal cell variable and cannot be straightforwardly obtained. This paper presents a Kalman Filter (KF) approach based on an optimized second-order Rc equivalent circuit model to carefully account for model parameter changes. An effective machine learning technique based on Proximal Policy optimization (PPO) is applied to train the algorithm. The results confirm the high robustness of the proposed method to varying operating conditions.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Model-Based Approach for Voltage and State-of-Charge Estimation of Lithium-ion Batteries\",\"authors\":\"Milad Andalibi, S. Madani, C. Ziebert, F. Naseri, Mojtaba Hajihosseini\",\"doi\":\"10.1109/iSPEC54162.2022.10032998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric vehicles are equipped with a large number of lithium-ion battery cells. To achieve superior performance and guarantee safety and longevity, there is a fundamental requirement for a Battery Management System (BMS). In the BMS, accurate prediction of the State-of-Charge (SOC) is a crucial task. The SOC information is needed for monitoring, controlling, and protecting the battery, e.g. to avoid hazardous over-charging or over-discharging. Nonetheless, the SOC is an internal cell variable and cannot be straightforwardly obtained. This paper presents a Kalman Filter (KF) approach based on an optimized second-order Rc equivalent circuit model to carefully account for model parameter changes. An effective machine learning technique based on Proximal Policy optimization (PPO) is applied to train the algorithm. The results confirm the high robustness of the proposed method to varying operating conditions.\",\"PeriodicalId\":129707,\"journal\":{\"name\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC54162.2022.10032998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10032998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电动汽车配备了大量的锂离子电池。为了实现卓越的性能并保证安全性和使用寿命,对电池管理系统(BMS)有一个基本的要求。在BMS中,准确预测荷电状态(SOC)是一项至关重要的任务。SOC信息用于监测、控制和保护电池,例如避免危险的过充电或过放电。尽管如此,SOC是一个内部细胞变量,不能直接获得。本文提出了一种基于优化二阶Rc等效电路模型的卡尔曼滤波(KF)方法,以仔细考虑模型参数的变化。采用一种有效的基于近端策略优化(PPO)的机器学习技术来训练算法。结果表明,该方法对不同工况具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model-Based Approach for Voltage and State-of-Charge Estimation of Lithium-ion Batteries
Electric vehicles are equipped with a large number of lithium-ion battery cells. To achieve superior performance and guarantee safety and longevity, there is a fundamental requirement for a Battery Management System (BMS). In the BMS, accurate prediction of the State-of-Charge (SOC) is a crucial task. The SOC information is needed for monitoring, controlling, and protecting the battery, e.g. to avoid hazardous over-charging or over-discharging. Nonetheless, the SOC is an internal cell variable and cannot be straightforwardly obtained. This paper presents a Kalman Filter (KF) approach based on an optimized second-order Rc equivalent circuit model to carefully account for model parameter changes. An effective machine learning technique based on Proximal Policy optimization (PPO) is applied to train the algorithm. The results confirm the high robustness of the proposed method to varying operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization strategy for multi-area DC dispatching control considering frequency constraints Design and Application Research of Synchronous Temporary Block Function between Valve Groups on Modular Multilevel Converter Ultra High Voltage Direct Current System A Multi-Stack Vanadium Redox Flow Battery Model Considering Electrolyte Transfer Delay Analysis of Kuramoto models for AC microgrids based on droop control Nodal Pricing Comparison between DCOPF and ACOPF: Case Studies for the Power Systems in Iceland and Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1