{"title":"用近红外高光谱成像技术对绿茶进行分类","authors":"P. Mishra, A. Nordon","doi":"10.1177/0960336019889321","DOIUrl":null,"url":null,"abstract":"Tea products analysis is currently limited to high-end analytical techniques such as high-performance liquid chromatography, gas chromatography and isotope analysis. However, these techniques are time-consuming, expensive, destructive and require trained experts to perform the experiments. In the present work, an application of near infrared hyperspectral imaging for the classification of similarly appearing green tea products is demonstrated. The tea products were classified based on their origin utilising a support vector machine classifier. Results showed good accuracy (96.36 ± 0.17%) for the classification of green tea products from seven different countries of origin.","PeriodicalId":113081,"journal":{"name":"NIR News","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classifying green teas with near infrared hyperspectral imaging\",\"authors\":\"P. Mishra, A. Nordon\",\"doi\":\"10.1177/0960336019889321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tea products analysis is currently limited to high-end analytical techniques such as high-performance liquid chromatography, gas chromatography and isotope analysis. However, these techniques are time-consuming, expensive, destructive and require trained experts to perform the experiments. In the present work, an application of near infrared hyperspectral imaging for the classification of similarly appearing green tea products is demonstrated. The tea products were classified based on their origin utilising a support vector machine classifier. Results showed good accuracy (96.36 ± 0.17%) for the classification of green tea products from seven different countries of origin.\",\"PeriodicalId\":113081,\"journal\":{\"name\":\"NIR News\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NIR News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0960336019889321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NIR News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0960336019889321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifying green teas with near infrared hyperspectral imaging
Tea products analysis is currently limited to high-end analytical techniques such as high-performance liquid chromatography, gas chromatography and isotope analysis. However, these techniques are time-consuming, expensive, destructive and require trained experts to perform the experiments. In the present work, an application of near infrared hyperspectral imaging for the classification of similarly appearing green tea products is demonstrated. The tea products were classified based on their origin utilising a support vector machine classifier. Results showed good accuracy (96.36 ± 0.17%) for the classification of green tea products from seven different countries of origin.