视网膜数字图像的EMD-SVM筛选系统:核和参数的影响

S. Lahmiri, C. Gargour, M. Gabrea
{"title":"视网膜数字图像的EMD-SVM筛选系统:核和参数的影响","authors":"S. Lahmiri, C. Gargour, M. Gabrea","doi":"10.1109/ISSPA.2012.6310684","DOIUrl":null,"url":null,"abstract":"The discrete wavelet transform (DWT) and empirical mode decomposition (EMD) are employed to analyze retina digital images in the frequency domain. In particular, statistical features are extracted from high frequency components of the analyzed images. The purpose is to classify normal versus abnormal images. Three different pathologies are considered including, circinates, drusens, and microaneurysms (MA). Support vector machines (SVM) with polynomial and radial basis function kernel are used to classify retina digital images. The simulation results from leave-one-out method (LOOM) show the effectiveness of the EMD-based features over the DWT-based ones. In addition, the polynomial kernel performs better than the radial basis function kernel.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An EMD-SVM screening system for retina digital images: The effect of kernels and parameters\",\"authors\":\"S. Lahmiri, C. Gargour, M. Gabrea\",\"doi\":\"10.1109/ISSPA.2012.6310684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete wavelet transform (DWT) and empirical mode decomposition (EMD) are employed to analyze retina digital images in the frequency domain. In particular, statistical features are extracted from high frequency components of the analyzed images. The purpose is to classify normal versus abnormal images. Three different pathologies are considered including, circinates, drusens, and microaneurysms (MA). Support vector machines (SVM) with polynomial and radial basis function kernel are used to classify retina digital images. The simulation results from leave-one-out method (LOOM) show the effectiveness of the EMD-based features over the DWT-based ones. In addition, the polynomial kernel performs better than the radial basis function kernel.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用离散小波变换(DWT)和经验模态分解(EMD)对视网膜数字图像进行频域分析。特别是,从分析图像的高频成分中提取统计特征。目的是对正常图像和异常图像进行分类。三种不同的病理被认为包括,环状动脉瘤,结节和微动脉瘤(MA)。采用多项式和径向基函数核的支持向量机对视网膜数字图像进行分类。利用留一法(LOOM)的仿真结果表明,基于emd的特征比基于dwd的特征更有效。此外,多项式核比径向基函数核性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An EMD-SVM screening system for retina digital images: The effect of kernels and parameters
The discrete wavelet transform (DWT) and empirical mode decomposition (EMD) are employed to analyze retina digital images in the frequency domain. In particular, statistical features are extracted from high frequency components of the analyzed images. The purpose is to classify normal versus abnormal images. Three different pathologies are considered including, circinates, drusens, and microaneurysms (MA). Support vector machines (SVM) with polynomial and radial basis function kernel are used to classify retina digital images. The simulation results from leave-one-out method (LOOM) show the effectiveness of the EMD-based features over the DWT-based ones. In addition, the polynomial kernel performs better than the radial basis function kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1