{"title":"基于张量面阻抗模型的平面透镜天线设计","authors":"Y. Tzabari, R. Shavit","doi":"10.1109/comcas52219.2021.9629114","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for surface impedance characterization for a metasurface with printed elements and arbitrary geometry. The modeling of the metasurface as a surface impedance simplifies the entire design cycle of a multilayer metasurface structure and enables analysis using transmission line theory. The proposed method is compared to HFSS simulations and very good agreement was obtained. Using the proposed model, a flat lens antenna based on a multilayer metasurface structure with printed elements that locally corrects the phase has been designed. The performance of the proposed lens in terms of radiation pattern and gain is satisfactory.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat Lens Antenna Design Based on Metasurfaces with Printed Elements using Tensor Surface Impedance Model\",\"authors\":\"Y. Tzabari, R. Shavit\",\"doi\":\"10.1109/comcas52219.2021.9629114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for surface impedance characterization for a metasurface with printed elements and arbitrary geometry. The modeling of the metasurface as a surface impedance simplifies the entire design cycle of a multilayer metasurface structure and enables analysis using transmission line theory. The proposed method is compared to HFSS simulations and very good agreement was obtained. Using the proposed model, a flat lens antenna based on a multilayer metasurface structure with printed elements that locally corrects the phase has been designed. The performance of the proposed lens in terms of radiation pattern and gain is satisfactory.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flat Lens Antenna Design Based on Metasurfaces with Printed Elements using Tensor Surface Impedance Model
This paper presents a novel method for surface impedance characterization for a metasurface with printed elements and arbitrary geometry. The modeling of the metasurface as a surface impedance simplifies the entire design cycle of a multilayer metasurface structure and enables analysis using transmission line theory. The proposed method is compared to HFSS simulations and very good agreement was obtained. Using the proposed model, a flat lens antenna based on a multilayer metasurface structure with printed elements that locally corrects the phase has been designed. The performance of the proposed lens in terms of radiation pattern and gain is satisfactory.