R. Glaser, Klara T. Knupfer, L. Maczewsky, Max Mausezahl, R. Nawrodt, G. Cole, J. Dickmann, S. Kroker
{"title":"复杂系统中的热噪声","authors":"R. Glaser, Klara T. Knupfer, L. Maczewsky, Max Mausezahl, R. Nawrodt, G. Cole, J. Dickmann, S. Kroker","doi":"10.22323/1.325.0010","DOIUrl":null,"url":null,"abstract":"We present a method to calculate the power spectral density of Brownian noise in complex optomechanical systems using Levin's approach of virtual pressure and present first mechanical loss measurements for high-purity GaAs over a wide temperature range from 7 K to 250 K. The loss reveals three Debye loss peaks. Each peak corresponds to an Arrhenius-like relaxation process with activation energies of 17.9 meV, 65.4 meV and 123 meV respectively. Additional light induced damping was observed for photon energies below and above the fundamental gap of GaAs in contrast to observations by Okamoto et al.","PeriodicalId":147125,"journal":{"name":"Proceedings of Gravitational-waves Science&Technology Symposium — PoS(GRASS2018)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal noise in complex systems\",\"authors\":\"R. Glaser, Klara T. Knupfer, L. Maczewsky, Max Mausezahl, R. Nawrodt, G. Cole, J. Dickmann, S. Kroker\",\"doi\":\"10.22323/1.325.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to calculate the power spectral density of Brownian noise in complex optomechanical systems using Levin's approach of virtual pressure and present first mechanical loss measurements for high-purity GaAs over a wide temperature range from 7 K to 250 K. The loss reveals three Debye loss peaks. Each peak corresponds to an Arrhenius-like relaxation process with activation energies of 17.9 meV, 65.4 meV and 123 meV respectively. Additional light induced damping was observed for photon energies below and above the fundamental gap of GaAs in contrast to observations by Okamoto et al.\",\"PeriodicalId\":147125,\"journal\":{\"name\":\"Proceedings of Gravitational-waves Science&Technology Symposium — PoS(GRASS2018)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Gravitational-waves Science&Technology Symposium — PoS(GRASS2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.325.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Gravitational-waves Science&Technology Symposium — PoS(GRASS2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.325.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a method to calculate the power spectral density of Brownian noise in complex optomechanical systems using Levin's approach of virtual pressure and present first mechanical loss measurements for high-purity GaAs over a wide temperature range from 7 K to 250 K. The loss reveals three Debye loss peaks. Each peak corresponds to an Arrhenius-like relaxation process with activation energies of 17.9 meV, 65.4 meV and 123 meV respectively. Additional light induced damping was observed for photon energies below and above the fundamental gap of GaAs in contrast to observations by Okamoto et al.