{"title":"通过混合数字表示的低功耗和高速乘法设计","authors":"Menghui Zheng, A. Albicki","doi":"10.1109/ICCD.1995.528924","DOIUrl":null,"url":null,"abstract":"A low power multiplication algorithm and its VLSI architecture using a mixed number representation is proposed. The reduced switching activity and low power dissipation are achieved through the Sign-Magnitude (SM) notation for the multiplicand and through a novel design of the Redundant Binary (RB) adder and Booth decoder. The high speed operation is achieved through the Carry-Propagation-Free (CPF) accumulation of the Partial Products (PP) by using the RB notation. Analysis showed that the switching activity in the PP generation process can be reduced on average by 90%. Compared to the same type of multipliers, the proposed design dissipates much less power and is 18% faster on average.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Low power and high speed multiplication design through mixed number representations\",\"authors\":\"Menghui Zheng, A. Albicki\",\"doi\":\"10.1109/ICCD.1995.528924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low power multiplication algorithm and its VLSI architecture using a mixed number representation is proposed. The reduced switching activity and low power dissipation are achieved through the Sign-Magnitude (SM) notation for the multiplicand and through a novel design of the Redundant Binary (RB) adder and Booth decoder. The high speed operation is achieved through the Carry-Propagation-Free (CPF) accumulation of the Partial Products (PP) by using the RB notation. Analysis showed that the switching activity in the PP generation process can be reduced on average by 90%. Compared to the same type of multipliers, the proposed design dissipates much less power and is 18% faster on average.\",\"PeriodicalId\":281907,\"journal\":{\"name\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.1995.528924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low power and high speed multiplication design through mixed number representations
A low power multiplication algorithm and its VLSI architecture using a mixed number representation is proposed. The reduced switching activity and low power dissipation are achieved through the Sign-Magnitude (SM) notation for the multiplicand and through a novel design of the Redundant Binary (RB) adder and Booth decoder. The high speed operation is achieved through the Carry-Propagation-Free (CPF) accumulation of the Partial Products (PP) by using the RB notation. Analysis showed that the switching activity in the PP generation process can be reduced on average by 90%. Compared to the same type of multipliers, the proposed design dissipates much less power and is 18% faster on average.