使用回归森林的实时手指动作捕捉

Pei-Chi Hsieh, Shih-Chung Hsu, Chung-Lin Huang
{"title":"使用回归森林的实时手指动作捕捉","authors":"Pei-Chi Hsieh, Shih-Chung Hsu, Chung-Lin Huang","doi":"10.1109/ICS.2016.0091","DOIUrl":null,"url":null,"abstract":"This paper proposes a real-time hand finger motion capturing method using Kinect. It consists of three modules: hand region segmentation, feature points extraction, and joint angle estimation. The first module extracts the hand region from the depth image. The second module applies a pixel classifier to segment the hand region into eight characteristic sub-regions and the residual sub-region. The centroid of each characteristic sub-region is extracted as the feature point. The third module converts these feature points to the feature vector for finger joint angle estimation by using the regression forest. The estimation process has both the speed and precision advantages and it can also deal with the hand finger motion parameter of novel hand gesture. The experimental results show that our method can capture the hand finger motion parameters of global in-plane hand rotation with sufficient estimation accuracy.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Hand Finger Motion Capturing Using Regression Forest\",\"authors\":\"Pei-Chi Hsieh, Shih-Chung Hsu, Chung-Lin Huang\",\"doi\":\"10.1109/ICS.2016.0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a real-time hand finger motion capturing method using Kinect. It consists of three modules: hand region segmentation, feature points extraction, and joint angle estimation. The first module extracts the hand region from the depth image. The second module applies a pixel classifier to segment the hand region into eight characteristic sub-regions and the residual sub-region. The centroid of each characteristic sub-region is extracted as the feature point. The third module converts these feature points to the feature vector for finger joint angle estimation by using the regression forest. The estimation process has both the speed and precision advantages and it can also deal with the hand finger motion parameter of novel hand gesture. The experimental results show that our method can capture the hand finger motion parameters of global in-plane hand rotation with sufficient estimation accuracy.\",\"PeriodicalId\":281088,\"journal\":{\"name\":\"2016 International Computer Symposium (ICS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Computer Symposium (ICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICS.2016.0091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于Kinect的实时手指动作捕捉方法。它包括三个模块:手部区域分割、特征点提取和关节角度估计。第一个模块从深度图像中提取手部区域。第二个模块使用像素分类器将手部区域分割成8个特征子区域和残差子区域。提取每个特征子区域的质心作为特征点。第三个模块将这些特征点转换为特征向量,利用回归森林进行手指关节角度估计。该估计过程具有速度快、精度高的优点,并且可以处理新手势的手指运动参数。实验结果表明,该方法能够捕获手部平面内全局旋转的手指运动参数,并具有足够的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Hand Finger Motion Capturing Using Regression Forest
This paper proposes a real-time hand finger motion capturing method using Kinect. It consists of three modules: hand region segmentation, feature points extraction, and joint angle estimation. The first module extracts the hand region from the depth image. The second module applies a pixel classifier to segment the hand region into eight characteristic sub-regions and the residual sub-region. The centroid of each characteristic sub-region is extracted as the feature point. The third module converts these feature points to the feature vector for finger joint angle estimation by using the regression forest. The estimation process has both the speed and precision advantages and it can also deal with the hand finger motion parameter of novel hand gesture. The experimental results show that our method can capture the hand finger motion parameters of global in-plane hand rotation with sufficient estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1