非线性系统辨识:在非线性黑箱模型中寻找结构

P. Dreesen, K. Tiels, Mariya Ishteva, J. Schoukens
{"title":"非线性系统辨识:在非线性黑箱模型中寻找结构","authors":"P. Dreesen, K. Tiels, Mariya Ishteva, J. Schoukens","doi":"10.1109/CAMSAP.2017.8313214","DOIUrl":null,"url":null,"abstract":"The use of black-box models is wide-spread in signal processing and system identification applications. However, often such models possess a large number of parameters, and obfuscate their inner workings, as there are cross-connections between all inputs and all outputs (and possibly all internal states) of the model. Although black-box models have proven their success and wide applicability, there is a need to shed a light on what goes on inside the model. We have developed a tensor-based method that aims at pinpointing the nonlinearities of a given nonlinear model into a small number of univariate nonlinear mappings, with the advantageous side-effect of reducing the parametric complexity. In this contribution we will discuss how the method is conceived, and how it can be applied to the task of finding structure in blackbox models. We have found that the tensor-based decoupling method is able to reconstruct up to high accuracy a given blackbox nonlinear model, while reducing the parametric complexity and revealing some of the inner operation of the model. Due to their universal use, we will focus the presentation on the use of nonlinear state-space models, but the method is also suitable for other model structures. We validate the method on a case study in nonlinear system identification.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear system identification: Finding structure in nonlinear black-box models\",\"authors\":\"P. Dreesen, K. Tiels, Mariya Ishteva, J. Schoukens\",\"doi\":\"10.1109/CAMSAP.2017.8313214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of black-box models is wide-spread in signal processing and system identification applications. However, often such models possess a large number of parameters, and obfuscate their inner workings, as there are cross-connections between all inputs and all outputs (and possibly all internal states) of the model. Although black-box models have proven their success and wide applicability, there is a need to shed a light on what goes on inside the model. We have developed a tensor-based method that aims at pinpointing the nonlinearities of a given nonlinear model into a small number of univariate nonlinear mappings, with the advantageous side-effect of reducing the parametric complexity. In this contribution we will discuss how the method is conceived, and how it can be applied to the task of finding structure in blackbox models. We have found that the tensor-based decoupling method is able to reconstruct up to high accuracy a given blackbox nonlinear model, while reducing the parametric complexity and revealing some of the inner operation of the model. Due to their universal use, we will focus the presentation on the use of nonlinear state-space models, but the method is also suitable for other model structures. We validate the method on a case study in nonlinear system identification.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

黑盒模型在信号处理和系统识别应用中得到了广泛的应用。然而,这样的模型通常拥有大量的参数,并且混淆了它们的内部工作,因为在模型的所有输入和所有输出(可能还有所有内部状态)之间存在交叉连接。尽管黑盒模型已经证明了它们的成功和广泛的适用性,但仍有必要阐明模型内部发生了什么。我们开发了一种基于张量的方法,旨在将给定非线性模型的非线性精确定位为少量的单变量非线性映射,具有降低参数复杂性的有利副作用。在本文中,我们将讨论该方法是如何构思的,以及如何将其应用于在黑箱模型中寻找结构的任务。我们发现,基于张量的解耦方法能够以较高的精度重建给定的黑盒非线性模型,同时降低了参数复杂性并揭示了模型的一些内部操作。由于它们的普遍使用,我们将重点介绍非线性状态空间模型的使用,但该方法也适用于其他模型结构。通过一个非线性系统辨识的实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear system identification: Finding structure in nonlinear black-box models
The use of black-box models is wide-spread in signal processing and system identification applications. However, often such models possess a large number of parameters, and obfuscate their inner workings, as there are cross-connections between all inputs and all outputs (and possibly all internal states) of the model. Although black-box models have proven their success and wide applicability, there is a need to shed a light on what goes on inside the model. We have developed a tensor-based method that aims at pinpointing the nonlinearities of a given nonlinear model into a small number of univariate nonlinear mappings, with the advantageous side-effect of reducing the parametric complexity. In this contribution we will discuss how the method is conceived, and how it can be applied to the task of finding structure in blackbox models. We have found that the tensor-based decoupling method is able to reconstruct up to high accuracy a given blackbox nonlinear model, while reducing the parametric complexity and revealing some of the inner operation of the model. Due to their universal use, we will focus the presentation on the use of nonlinear state-space models, but the method is also suitable for other model structures. We validate the method on a case study in nonlinear system identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1