有髓鞘神经元动作电位传播的非局部模型

C. Drapaca, S. Ozdemir, E. Proctor
{"title":"有髓鞘神经元动作电位传播的非局部模型","authors":"C. Drapaca, S. Ozdemir, E. Proctor","doi":"10.28991/esj-2020-01219","DOIUrl":null,"url":null,"abstract":"Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain's structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non-local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non-locality on the distribution of the membrane potential are investigated using numerical simulations.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Non-local Model of the Propagation of Action Potentials in Myelinated Neurons\",\"authors\":\"C. Drapaca, S. Ozdemir, E. Proctor\",\"doi\":\"10.28991/esj-2020-01219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain's structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non-local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non-locality on the distribution of the membrane potential are investigated using numerical simulations.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/esj-2020-01219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/esj-2020-01219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

髓鞘神经元的特点是髓鞘的存在,髓鞘是一种多层膜,包裹在由特化神经胶质细胞形成的轴突周围。髓磷脂作为电绝缘体,因此,在有髓鞘的神经元中,动作电位不会在轴突内传播,而只发生在Ranvier节点上,这是轴突髓鞘形成的间隙。脑科学的最新进展表明,这些所谓的跳跃动作电位的形状、时间和传播速度是由神经元、神经胶质细胞和细胞外空间之间的各种生化相互作用控制的。鉴于大脑结构和过程的复杂性,本文提出了非局部效应参与动作电位最优传播的工作假设。提出了一种包含分数阶空间导数的有髓神经元动作电位传播的非局部模型。利用数值模拟研究了非局域性对膜电位分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Non-local Model of the Propagation of Action Potentials in Myelinated Neurons
Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain's structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non-local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non-locality on the distribution of the membrane potential are investigated using numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1