使用最大似然Hebbian学习的分类和ICA

E. Corchado, J. Koetsier, D. MacDonald, C. Fyfe
{"title":"使用最大似然Hebbian学习的分类和ICA","authors":"E. Corchado, J. Koetsier, D. MacDonald, C. Fyfe","doi":"10.1109/NNSP.2002.1030044","DOIUrl":null,"url":null,"abstract":"We investigate an extension of Hebbian learning in a principal component analysis network which has been derived to be optimal for a specific probability density function(PDF). We note that this probability density function is one of a family of PDFs and investigate the learning rules formed in order to be optimal for several members of this family. We show that, whereas previous authors have viewed the single member of the family as an extension of PCA, it is more appropriate to view the whole family of learning rules as methods of performing exploratory projection pursuit (EPP). We explore the performance of our method first in response to an artificial data type, then to a real data set.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification and ICA using maximum likelihood Hebbian learning\",\"authors\":\"E. Corchado, J. Koetsier, D. MacDonald, C. Fyfe\",\"doi\":\"10.1109/NNSP.2002.1030044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate an extension of Hebbian learning in a principal component analysis network which has been derived to be optimal for a specific probability density function(PDF). We note that this probability density function is one of a family of PDFs and investigate the learning rules formed in order to be optimal for several members of this family. We show that, whereas previous authors have viewed the single member of the family as an extension of PCA, it is more appropriate to view the whole family of learning rules as methods of performing exploratory projection pursuit (EPP). We explore the performance of our method first in response to an artificial data type, then to a real data set.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了Hebbian学习在主成分分析网络中的扩展,该网络已被导出为特定概率密度函数(PDF)的最优。我们注意到这个概率密度函数是pdf族中的一个,并研究了为了对这个族中的几个成员最优而形成的学习规则。我们表明,尽管以前的作者将家族的单个成员视为PCA的扩展,但将整个学习规则家族视为执行探索性投影追踪(EPP)的方法更为合适。我们首先在响应人工数据类型时探索我们的方法的性能,然后是对真实数据集的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification and ICA using maximum likelihood Hebbian learning
We investigate an extension of Hebbian learning in a principal component analysis network which has been derived to be optimal for a specific probability density function(PDF). We note that this probability density function is one of a family of PDFs and investigate the learning rules formed in order to be optimal for several members of this family. We show that, whereas previous authors have viewed the single member of the family as an extension of PCA, it is more appropriate to view the whole family of learning rules as methods of performing exploratory projection pursuit (EPP). We explore the performance of our method first in response to an artificial data type, then to a real data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1