用随机动态规划表示住宅建筑能源管理的长期影响

K. Thorvaldsen, Sigurd Bjarghov, H. Farahmand
{"title":"用随机动态规划表示住宅建筑能源管理的长期影响","authors":"K. Thorvaldsen, Sigurd Bjarghov, H. Farahmand","doi":"10.1109/PMAPS47429.2020.9183623","DOIUrl":null,"url":null,"abstract":"Scheduling a residential building short-term to optimize the electricity bill can be difficult with the inclusion of capacity-based grid tariffs. Scheduling the building based on a proposed measured-peak (MP) grid tariff, which is a cost based on the highest peak power over a period, requires the user to consider the impact the current decision-making has in the future. Therefore, the authors propose a mathematical model using stochastic dynamic programming (SDP) that tries to represent the long-term impact of current decision-making. The SDP algorithm calculates non-linear expected future cost curves (EFCC) for the building based on the peak power backwards for each day over a month. The uncertainty in load demand and weather are considered using a discrete Markov chain setup. The model is applied to a case study for a Norwegian building with smart control of flexible loads, and compared against methods where the MP grid tariff is not accurately represented, and where the user has perfect information of the whole month. The results showed that the SDP algorithm performs 0.3 % better than a scenario with no accurate way of presenting future impacts, and performs 3.6 % worse compared to a scenario where the user had perfect information.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Representing Long-term Impact of Residential Building Energy Management using Stochastic Dynamic Programming\",\"authors\":\"K. Thorvaldsen, Sigurd Bjarghov, H. Farahmand\",\"doi\":\"10.1109/PMAPS47429.2020.9183623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling a residential building short-term to optimize the electricity bill can be difficult with the inclusion of capacity-based grid tariffs. Scheduling the building based on a proposed measured-peak (MP) grid tariff, which is a cost based on the highest peak power over a period, requires the user to consider the impact the current decision-making has in the future. Therefore, the authors propose a mathematical model using stochastic dynamic programming (SDP) that tries to represent the long-term impact of current decision-making. The SDP algorithm calculates non-linear expected future cost curves (EFCC) for the building based on the peak power backwards for each day over a month. The uncertainty in load demand and weather are considered using a discrete Markov chain setup. The model is applied to a case study for a Norwegian building with smart control of flexible loads, and compared against methods where the MP grid tariff is not accurately represented, and where the user has perfect information of the whole month. The results showed that the SDP algorithm performs 0.3 % better than a scenario with no accurate way of presenting future impacts, and performs 3.6 % worse compared to a scenario where the user had perfect information.\",\"PeriodicalId\":126918,\"journal\":{\"name\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS47429.2020.9183623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于包含基于容量的电网电价,短期规划住宅建筑以优化电费可能很困难。根据拟议的测峰电价(MP)来调度建筑物,这是一种基于一段时间内最高峰值功率的成本,要求用户考虑当前决策对未来的影响。因此,作者提出了一个使用随机动态规划(SDP)的数学模型,试图表示当前决策的长期影响。SDP算法基于一个月内每天的峰值功率反向计算建筑物的非线性预期未来成本曲线(EFCC)。采用离散马尔可夫链的方法考虑了负荷需求和天气的不确定性。该模型被应用于一个挪威建筑的案例研究中,该建筑具有灵活负载的智能控制,并与不准确表示MP电网电价的方法进行了比较,其中用户拥有完整的整个月信息。结果表明,SDP算法的性能比没有准确呈现未来影响的场景好0.3%,与用户拥有完美信息的场景相比,性能差3.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Representing Long-term Impact of Residential Building Energy Management using Stochastic Dynamic Programming
Scheduling a residential building short-term to optimize the electricity bill can be difficult with the inclusion of capacity-based grid tariffs. Scheduling the building based on a proposed measured-peak (MP) grid tariff, which is a cost based on the highest peak power over a period, requires the user to consider the impact the current decision-making has in the future. Therefore, the authors propose a mathematical model using stochastic dynamic programming (SDP) that tries to represent the long-term impact of current decision-making. The SDP algorithm calculates non-linear expected future cost curves (EFCC) for the building based on the peak power backwards for each day over a month. The uncertainty in load demand and weather are considered using a discrete Markov chain setup. The model is applied to a case study for a Norwegian building with smart control of flexible loads, and compared against methods where the MP grid tariff is not accurately represented, and where the user has perfect information of the whole month. The results showed that the SDP algorithm performs 0.3 % better than a scenario with no accurate way of presenting future impacts, and performs 3.6 % worse compared to a scenario where the user had perfect information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Operating Reserve Assessment in Systems with Energy Storage and Electric Vehicles Framework and methodology for active distribution grid planning in Norway Parallel GPU Implementation for Fast Generating System Adequacy Assessment via Sequential Monte Carlo Simulation Distribution System Planning Considering Power Quality, Loadability and Economic Aspects Modelling and Simulation of Uncertainty in the Placement of Distributed Energy Resources for Planning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1