使用数据驱动的图像特征子集对色素皮肤病变进行分类

I. Mporas, I. Perikos, M. Paraskevas
{"title":"使用数据驱动的图像特征子集对色素皮肤病变进行分类","authors":"I. Mporas, I. Perikos, M. Paraskevas","doi":"10.1109/IISA.2019.8900769","DOIUrl":null,"url":null,"abstract":"In this paper we present an architecture for identification of pigmented skin lesions from dermatoscopic images. The architecture used a large number of image features and was evaluated with several classification algorithms on different feature subsets as extracted from feature ranking. The best performing classification algorithm was the support vector machines using polynomial kernel function with classification accuracy equal to 74.69% and the most precisely classified skin lesion type between seven different skin pathologies was nevus with accuracy equal to 94.38%.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pigmented Skin Lesions Classification Using Data Driven Subsets of Image Features\",\"authors\":\"I. Mporas, I. Perikos, M. Paraskevas\",\"doi\":\"10.1109/IISA.2019.8900769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an architecture for identification of pigmented skin lesions from dermatoscopic images. The architecture used a large number of image features and was evaluated with several classification algorithms on different feature subsets as extracted from feature ranking. The best performing classification algorithm was the support vector machines using polynomial kernel function with classification accuracy equal to 74.69% and the most precisely classified skin lesion type between seven different skin pathologies was nevus with accuracy equal to 94.38%.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种架构,用于从皮肤镜图像中识别色素皮肤病变。该架构使用了大量的图像特征,并在特征排序中提取的不同特征子集上使用几种分类算法进行评估。其中,使用多项式核函数的支持向量机分类准确率最高,达到74.69%;7种不同皮肤病变类型中最准确的分类是痣,准确率为94.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pigmented Skin Lesions Classification Using Data Driven Subsets of Image Features
In this paper we present an architecture for identification of pigmented skin lesions from dermatoscopic images. The architecture used a large number of image features and was evaluated with several classification algorithms on different feature subsets as extracted from feature ranking. The best performing classification algorithm was the support vector machines using polynomial kernel function with classification accuracy equal to 74.69% and the most precisely classified skin lesion type between seven different skin pathologies was nevus with accuracy equal to 94.38%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data Advancing Adult Online Education through a SN-Learning Environment Smart educational games and Consent under the scope of General Data Protection Regulation Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach Data Mining for Smart Cities: Predicting Electricity Consumption by Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1