基于神经网络的正交平衡全双工发射机数字预失真与自干扰消除

Erez Loebl, Nimrod Ginzberg, E. Cohen
{"title":"基于神经网络的正交平衡全双工发射机数字预失真与自干扰消除","authors":"Erez Loebl, Nimrod Ginzberg, E. Cohen","doi":"10.1109/comcas52219.2021.9629003","DOIUrl":null,"url":null,"abstract":"This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network-Based Digital Predistortion and Self-Interference Cancellation in a Quadrature Balanced Full Duplex Transmitter\",\"authors\":\"Erez Loebl, Nimrod Ginzberg, E. Cohen\",\"doi\":\"10.1109/comcas52219.2021.9629003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作提出了一个神经网络(NN)实现的数字自干扰消除(SIC)滤波器和数字预失真(DPD)线性器在正交平衡全双工(FD)收发器前端。对神经网络的设计和功能进行了定量描述。采用离散分量正交平衡射频前端和20 MHz 802.11ac WiFi信号,在2.4 GHz中心频率附近的峰值平均功率比(PAPR)为10 dB,对所提出的算法进行了测量评估。在平均发射(TX)功率为13 dBm时,NN-DPD将TX误差矢量幅度(EVM)校正13 dB,达到-41.5 dB。在射频域中,TX- rx的总隔离为50 dB,其中20 dB由无源TX- rx隔离贡献,30 dB由使用NN SIC滤波器的有源TX泄漏抑制贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network-Based Digital Predistortion and Self-Interference Cancellation in a Quadrature Balanced Full Duplex Transmitter
This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Enhancement of Integrated Circuits and Power Devices via Embedded Diamond Heat Management A Balanced, Series Fed Horn Array Antenna Modeling and Analysis of Spatial Distributions of Users in Massive MIMO Systems Ultra-Wideband Transmission Lines on Complex Structures via Extendable Aerosol Jet 3D-Printing Recent Progress in Revision of IEEE Std 1720-2012 Recommended Practice for Near-Field Antenna Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1