{"title":"基于神经网络的正交平衡全双工发射机数字预失真与自干扰消除","authors":"Erez Loebl, Nimrod Ginzberg, E. Cohen","doi":"10.1109/comcas52219.2021.9629003","DOIUrl":null,"url":null,"abstract":"This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network-Based Digital Predistortion and Self-Interference Cancellation in a Quadrature Balanced Full Duplex Transmitter\",\"authors\":\"Erez Loebl, Nimrod Ginzberg, E. Cohen\",\"doi\":\"10.1109/comcas52219.2021.9629003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Network-Based Digital Predistortion and Self-Interference Cancellation in a Quadrature Balanced Full Duplex Transmitter
This work presents a neural network (NN) implementation of a digital self-interference cancellation (SIC) filter and a digital predistortion (DPD) linearizer in a quadrature balanced full duplex (FD) transceiver front-end. A quantitative description of the NNs design and functionality is laid out. The proposed algorithms were evaluated in measurements using a discrete-component quadrature balanced RF front-end and a 20 MHz 802.11ac WiFi signal with 10 dB peak-to-average power ratio (PAPR) around the center frequency of 2.4 GHz. At 13 dBm average transmit (TX) power, the NN-DPD corrects TX error vector magnitude (EVM) by 13 dB to the value of -41.5 dB. Total TX-RX isolation of 50 dB is demonstrated in the RF domain, out of which 20 dB is contributed by the passive TX-RX isolation and 30 dB by active TX leakage suppression using the NN SIC filter.