在极高维数据集中快速近似相似搜索

M. Houle, J. Sakuma
{"title":"在极高维数据集中快速近似相似搜索","authors":"M. Houle, J. Sakuma","doi":"10.1109/ICDE.2005.66","DOIUrl":null,"url":null,"abstract":"This paper introduces a practical index for approximate similarity queries of large multi-dimensional data sets: the spatial approximation sample hierarchy (SASH). A SASH is a multi-level structure of random samples, recursively constructed by building a SASH on a large randomly selected sample of data objects, and then connecting each remaining object to several of their approximate nearest neighbors from within the sample. Queries are processed by first locating approximate neighbors within the sample, and then using the pre-established connections to discover neighbors within the remainder of the data set. The SASH index relies on a pairwise distance measure, but otherwise makes no assumptions regarding the representation of the data. Experimental results are provided for query-by-example operations on protein sequence, image, and text data sets, including one consisting of more than 1 million vectors spanning more than 1.1 million terms - far in excess of what spatial search indices can handle efficiently. For sets of this size, the SASH can return a large proportion of the true neighbors roughly 2 orders of magnitude faster than sequential search.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Fast approximate similarity search in extremely high-dimensional data sets\",\"authors\":\"M. Houle, J. Sakuma\",\"doi\":\"10.1109/ICDE.2005.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a practical index for approximate similarity queries of large multi-dimensional data sets: the spatial approximation sample hierarchy (SASH). A SASH is a multi-level structure of random samples, recursively constructed by building a SASH on a large randomly selected sample of data objects, and then connecting each remaining object to several of their approximate nearest neighbors from within the sample. Queries are processed by first locating approximate neighbors within the sample, and then using the pre-established connections to discover neighbors within the remainder of the data set. The SASH index relies on a pairwise distance measure, but otherwise makes no assumptions regarding the representation of the data. Experimental results are provided for query-by-example operations on protein sequence, image, and text data sets, including one consisting of more than 1 million vectors spanning more than 1.1 million terms - far in excess of what spatial search indices can handle efficiently. For sets of this size, the SASH can return a large proportion of the true neighbors roughly 2 orders of magnitude faster than sequential search.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

本文介绍了一种用于大型多维数据集近似相似查询的实用索引:空间近似样本层次(SASH)。SASH是随机样本的多级结构,它通过在随机选择的大量数据对象样本上构建SASH,然后将每个剩余对象连接到样本内的几个最接近的邻居来递归地构建。查询的处理方法是首先定位样本中的近似邻居,然后使用预先建立的连接来发现数据集其余部分中的邻居。SASH指数依赖于两两距离度量,但除此之外对数据的表示没有任何假设。实验结果提供了对蛋白质序列、图像和文本数据集的按例查询操作,包括一个由超过100万个向量组成、跨越超过110万个术语的数据集——远远超出了空间搜索索引所能有效处理的范围。对于这种大小的集合,SASH可以返回很大比例的真实邻居,大约比顺序搜索快2个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast approximate similarity search in extremely high-dimensional data sets
This paper introduces a practical index for approximate similarity queries of large multi-dimensional data sets: the spatial approximation sample hierarchy (SASH). A SASH is a multi-level structure of random samples, recursively constructed by building a SASH on a large randomly selected sample of data objects, and then connecting each remaining object to several of their approximate nearest neighbors from within the sample. Queries are processed by first locating approximate neighbors within the sample, and then using the pre-established connections to discover neighbors within the remainder of the data set. The SASH index relies on a pairwise distance measure, but otherwise makes no assumptions regarding the representation of the data. Experimental results are provided for query-by-example operations on protein sequence, image, and text data sets, including one consisting of more than 1 million vectors spanning more than 1.1 million terms - far in excess of what spatial search indices can handle efficiently. For sets of this size, the SASH can return a large proportion of the true neighbors roughly 2 orders of magnitude faster than sequential search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive caching for spatial queries in mobile environments MoDB: database system for synthesizing human motion Integrating data from disparate sources: a mass collaboration approach ViteX: a streaming XPath processing system Efficient data management on lightweight computing devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1