基于自回归模型的复合高斯杂波协方差矩阵的最大似然估计

L. Li, G. Cui, Wei Yi, L. Kong, Xiaobo Yang
{"title":"基于自回归模型的复合高斯杂波协方差矩阵的最大似然估计","authors":"L. Li, G. Cui, Wei Yi, L. Kong, Xiaobo Yang","doi":"10.1109/RADAR.2014.6875744","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of speckle covariance matrix estimation for Compound-Gaussian clutter. The speckle component is modeled as a low order autoregressive (AR) process. We derive the AR coefficients conditioned Likelihood function of the secondary data and propose an iterative approach for the optimizing problem under the criteria of Maximum-Likelihood (ML). We evaluate the performance of the new method by the normalized Frobenius norm of the error matrix and the normalized SINR through numerical simulations. The simulation results show that the new method outperforms existing methods in both accuracy and robustness.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":"30 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum-Likelihood estimation for covariance matrix in Compound-Gaussian clutter via autoregressive modeling\",\"authors\":\"L. Li, G. Cui, Wei Yi, L. Kong, Xiaobo Yang\",\"doi\":\"10.1109/RADAR.2014.6875744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of speckle covariance matrix estimation for Compound-Gaussian clutter. The speckle component is modeled as a low order autoregressive (AR) process. We derive the AR coefficients conditioned Likelihood function of the secondary data and propose an iterative approach for the optimizing problem under the criteria of Maximum-Likelihood (ML). We evaluate the performance of the new method by the normalized Frobenius norm of the error matrix and the normalized SINR through numerical simulations. The simulation results show that the new method outperforms existing methods in both accuracy and robustness.\",\"PeriodicalId\":127690,\"journal\":{\"name\":\"2014 IEEE Radar Conference\",\"volume\":\"30 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.6875744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了复合高斯杂波的散斑协方差矩阵估计问题。将散斑分量建模为一个低阶自回归过程。我们推导了辅助数据的AR系数条件似然函数,并提出了最大似然准则下优化问题的迭代方法。通过数值模拟,通过误差矩阵的归一化Frobenius范数和归一化信噪比来评价新方法的性能。仿真结果表明,新方法在精度和鲁棒性方面都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum-Likelihood estimation for covariance matrix in Compound-Gaussian clutter via autoregressive modeling
This paper addresses the problem of speckle covariance matrix estimation for Compound-Gaussian clutter. The speckle component is modeled as a low order autoregressive (AR) process. We derive the AR coefficients conditioned Likelihood function of the secondary data and propose an iterative approach for the optimizing problem under the criteria of Maximum-Likelihood (ML). We evaluate the performance of the new method by the normalized Frobenius norm of the error matrix and the normalized SINR through numerical simulations. The simulation results show that the new method outperforms existing methods in both accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel random stepped frequency radar using chaos A robust sparse optimization for pattern synthesis with unknown manifold error Low-profile high-sensitivity sub-array module with HTS filters for an active phased array antenna Compressed radar via Doppler focusing Ambiguity function of bipolar ultrawideband-throb signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1