机器人运动规划的仿真环境

Alan Ettlin, P. Büchler, H. Bleuler
{"title":"机器人运动规划的仿真环境","authors":"Alan Ettlin, P. Büchler, H. Bleuler","doi":"10.1109/ROMOCO.2005.201436","DOIUrl":null,"url":null,"abstract":"We introduce Ibex, a real-time capable physics simulation framework. Ibex is ideally suited to simulate mechatronic systems as well as environments in which robot motion planning algorithms can be developed and tested. The entire control loop encountered in robotics can be simulated. This includes the simulation of robot sensors and actuators. The current implementation includes a rigid-body simulation which encompasses not only kinematic but also dynamics effects. It performs collision detection and resolution in real-time or faster for typical setups. The completely modular design of Ibex means the framework is easily configurable and extensible. Additional physics simulation modules covering phenomena such as electromagnetic forces can be integrated transparently. These modules can interact with existing entities to build an overall system. Ibex can communicate with external hardware through I/O interfaces, thus allowing hardware-in-the-loop simulations. We present example Ibex applications from both industrial and mobile robotics. We also describe why Ibex is a real asset for robot motion planning and how we intend to apply it in this field.","PeriodicalId":142727,"journal":{"name":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A simulation environment for robot motion planning\",\"authors\":\"Alan Ettlin, P. Büchler, H. Bleuler\",\"doi\":\"10.1109/ROMOCO.2005.201436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Ibex, a real-time capable physics simulation framework. Ibex is ideally suited to simulate mechatronic systems as well as environments in which robot motion planning algorithms can be developed and tested. The entire control loop encountered in robotics can be simulated. This includes the simulation of robot sensors and actuators. The current implementation includes a rigid-body simulation which encompasses not only kinematic but also dynamics effects. It performs collision detection and resolution in real-time or faster for typical setups. The completely modular design of Ibex means the framework is easily configurable and extensible. Additional physics simulation modules covering phenomena such as electromagnetic forces can be integrated transparently. These modules can interact with existing entities to build an overall system. Ibex can communicate with external hardware through I/O interfaces, thus allowing hardware-in-the-loop simulations. We present example Ibex applications from both industrial and mobile robotics. We also describe why Ibex is a real asset for robot motion planning and how we intend to apply it in this field.\",\"PeriodicalId\":142727,\"journal\":{\"name\":\"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2005.201436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2005.201436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们介绍了实时物理仿真框架Ibex。Ibex非常适合模拟机电系统以及可以开发和测试机器人运动规划算法的环境。机器人中遇到的整个控制回路都可以模拟。这包括机器人传感器和执行器的仿真。目前的实现包括一个刚体仿真,它不仅包括运动学的影响,也包括动力学的影响。它执行碰撞检测和解决实时或更快的典型设置。Ibex的完全模块化设计意味着该框架易于配置和扩展。可以透明地集成其他物理模拟模块,包括电磁力等现象。这些模块可以与现有实体交互以构建一个整体系统。Ibex可以通过I/O接口与外部硬件通信,从而允许硬件在环模拟。我们展示了工业机器人和移动机器人的Ibex应用示例。我们还描述了为什么Ibex是机器人运动规划的真正资产,以及我们打算如何将其应用于该领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simulation environment for robot motion planning
We introduce Ibex, a real-time capable physics simulation framework. Ibex is ideally suited to simulate mechatronic systems as well as environments in which robot motion planning algorithms can be developed and tested. The entire control loop encountered in robotics can be simulated. This includes the simulation of robot sensors and actuators. The current implementation includes a rigid-body simulation which encompasses not only kinematic but also dynamics effects. It performs collision detection and resolution in real-time or faster for typical setups. The completely modular design of Ibex means the framework is easily configurable and extensible. Additional physics simulation modules covering phenomena such as electromagnetic forces can be integrated transparently. These modules can interact with existing entities to build an overall system. Ibex can communicate with external hardware through I/O interfaces, thus allowing hardware-in-the-loop simulations. We present example Ibex applications from both industrial and mobile robotics. We also describe why Ibex is a real asset for robot motion planning and how we intend to apply it in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive velocity field control of a wheeled mobile robot Simulation of power consumption for walking robot Applications of MRROC++ robot programming framework Friction control in terms of unnormalized quasi-velocities A team of walking robots; control and navigation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1