一种基于参考向量的强度Pareto进化算法

Lu Zhang, Qinchao Meng
{"title":"一种基于参考向量的强度Pareto进化算法","authors":"Lu Zhang, Qinchao Meng","doi":"10.1109/ICCSS53909.2021.9721982","DOIUrl":null,"url":null,"abstract":"In this paper, a reference-vector-based strength Pareto evolutionary algorithm 2 (RVSPEA2) is proposed to deal with the multiobjective continuous optimization problems. In the proposed RVSPEA2, an objective normalization technique is firstly applied to guarantee the consistency of disparately scaled objectives. Then an improved solutions selection mechanism, based on the reference vectors generation and niche-selection operation, is designed to improve the diversity and convergence of the optimal solutions. Finally, some benchmark test problems are applied to evaluate the effectiveness of the proposed RVSPEA2 algorithm. The results showed that this algorithm performs well than other compared optimization algorithms on convergence and diversity.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reference-Vector-Based Strength Pareto Evolutionary Algorithm 2\",\"authors\":\"Lu Zhang, Qinchao Meng\",\"doi\":\"10.1109/ICCSS53909.2021.9721982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reference-vector-based strength Pareto evolutionary algorithm 2 (RVSPEA2) is proposed to deal with the multiobjective continuous optimization problems. In the proposed RVSPEA2, an objective normalization technique is firstly applied to guarantee the consistency of disparately scaled objectives. Then an improved solutions selection mechanism, based on the reference vectors generation and niche-selection operation, is designed to improve the diversity and convergence of the optimal solutions. Finally, some benchmark test problems are applied to evaluate the effectiveness of the proposed RVSPEA2 algorithm. The results showed that this algorithm performs well than other compared optimization algorithms on convergence and diversity.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9721982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对多目标连续优化问题,提出了一种基于参考向量的强度Pareto进化算法2 (RVSPEA2)。在本文提出的RVSPEA2算法中,首先采用目标归一化技术来保证不同尺度目标的一致性。在此基础上,设计了一种基于参考向量生成和小生境选择操作的改进的解选择机制,以提高最优解的多样性和收敛性。最后,应用一些基准测试问题来评估所提出的RVSPEA2算法的有效性。结果表明,该算法在收敛性和多样性方面优于其他优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Reference-Vector-Based Strength Pareto Evolutionary Algorithm 2
In this paper, a reference-vector-based strength Pareto evolutionary algorithm 2 (RVSPEA2) is proposed to deal with the multiobjective continuous optimization problems. In the proposed RVSPEA2, an objective normalization technique is firstly applied to guarantee the consistency of disparately scaled objectives. Then an improved solutions selection mechanism, based on the reference vectors generation and niche-selection operation, is designed to improve the diversity and convergence of the optimal solutions. Finally, some benchmark test problems are applied to evaluate the effectiveness of the proposed RVSPEA2 algorithm. The results showed that this algorithm performs well than other compared optimization algorithms on convergence and diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1