基于gpu的SIFT跟踪实时眨眼检测

M. Lalonde, David Byrns, L. Gagnon, N. Teasdale, D. Laurendeau
{"title":"基于gpu的SIFT跟踪实时眨眼检测","authors":"M. Lalonde, David Byrns, L. Gagnon, N. Teasdale, D. Laurendeau","doi":"10.1109/CRV.2007.54","DOIUrl":null,"url":null,"abstract":"This paper reports on the implementation of a GPU-based, real-time eye blink detector on very low contrast images acquired under near-infrared illumination. This detector is part of a multi-sensor data acquisition and analysis system for driver performance assessment and training. Eye blinks are detected inside regions of interest that are aligned with the subject's eyes at initialization. Alignment is maintained through time by tracking SIFT feature points that are used to estimate the affine transformation between the initial face pose and the pose in subsequent frames. The GPU implementation of the SIFT feature point extraction algorithm ensures real-time processing. An eye blink detection rate of 97% is obtained on a video dataset of 33,000 frames showing 237 blinks from 22 subjects.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":"{\"title\":\"Real-time eye blink detection with GPU-based SIFT tracking\",\"authors\":\"M. Lalonde, David Byrns, L. Gagnon, N. Teasdale, D. Laurendeau\",\"doi\":\"10.1109/CRV.2007.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the implementation of a GPU-based, real-time eye blink detector on very low contrast images acquired under near-infrared illumination. This detector is part of a multi-sensor data acquisition and analysis system for driver performance assessment and training. Eye blinks are detected inside regions of interest that are aligned with the subject's eyes at initialization. Alignment is maintained through time by tracking SIFT feature points that are used to estimate the affine transformation between the initial face pose and the pose in subsequent frames. The GPU implementation of the SIFT feature point extraction algorithm ensures real-time processing. An eye blink detection rate of 97% is obtained on a video dataset of 33,000 frames showing 237 blinks from 22 subjects.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

摘要

本文报道了一种基于gpu的近红外低对比度图像实时眨眼检测器的实现。该检测器是用于驾驶员性能评估和培训的多传感器数据采集和分析系统的一部分。在初始化时,在与受试者眼睛对齐的感兴趣区域内检测到眨眼。通过跟踪SIFT特征点来保持对齐,这些特征点用于估计初始人脸姿态与后续帧中姿态之间的仿射变换。SIFT特征点提取算法的GPU实现保证了处理的实时性。在一个包含33,000帧的视频数据集上,从22个受试者中获得了237次眨眼,从而获得了97%的眨眼检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time eye blink detection with GPU-based SIFT tracking
This paper reports on the implementation of a GPU-based, real-time eye blink detector on very low contrast images acquired under near-infrared illumination. This detector is part of a multi-sensor data acquisition and analysis system for driver performance assessment and training. Eye blinks are detected inside regions of interest that are aligned with the subject's eyes at initialization. Alignment is maintained through time by tracking SIFT feature points that are used to estimate the affine transformation between the initial face pose and the pose in subsequent frames. The GPU implementation of the SIFT feature point extraction algorithm ensures real-time processing. An eye blink detection rate of 97% is obtained on a video dataset of 33,000 frames showing 237 blinks from 22 subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM Version and vergence control of a stereo camera head by fitting the movement into the Hering's law Using Feature Selection For Object Segmentation and Tracking Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered scenes? A Simple Operator for Very Precise Estimation of Ellipses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1