Caterina Feletti, C. Mereghetti, Beatrice Palano, Priscilla Raucci
{"title":"带光的完全半和异步不透明机器人的均匀圆形成","authors":"Caterina Feletti, C. Mereghetti, Beatrice Palano, Priscilla Raucci","doi":"10.3390/app13137991","DOIUrl":null,"url":null,"abstract":"In the field of robotics, a lot of theoretical models have been settled to formalize multi-agent systems and design distributed algorithms for autonomous robots. Among the most investigated problems for such systems, the study of the Uniform Circle Formation (UCF problem earned a lot of attention for the properties of such a convenient disposition. Such a problem asks robots to move on the plane to form a regular polygon, running a deterministic and distributed algorithm by executing a sequence of look–compute–move cycles. This work aims to solve the UCF problem for a very restrictive model of robots: they are punctiform, anonymous, and indistinguishable. They are completely disoriented, i.e., they share neither the coordinate system nor chirality. Additionally, they are opaque, so collinearities can hide important data for a proper computation. To tackle these system limitations, robots are equipped with a persistent light used to communicate and store a constant amount of information. For such a robot model, this paper presents a solution for UCF for each of the three scheduling modes usually studied in the literature: fully synchronous, semi-synchronous, and asynchronous. Regarding the time complexity, the proposed algorithms use a constant number of cycles (epochs) for fully synchronous (semi-synchronous) robots, and linearly, many epochs in the worst case for asynchronous robots.","PeriodicalId":212849,"journal":{"name":"Italian Conference on Theoretical Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform Circle Formation for Fully Semi-, and Asynchronous Opaque Robots with Lights\",\"authors\":\"Caterina Feletti, C. Mereghetti, Beatrice Palano, Priscilla Raucci\",\"doi\":\"10.3390/app13137991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of robotics, a lot of theoretical models have been settled to formalize multi-agent systems and design distributed algorithms for autonomous robots. Among the most investigated problems for such systems, the study of the Uniform Circle Formation (UCF problem earned a lot of attention for the properties of such a convenient disposition. Such a problem asks robots to move on the plane to form a regular polygon, running a deterministic and distributed algorithm by executing a sequence of look–compute–move cycles. This work aims to solve the UCF problem for a very restrictive model of robots: they are punctiform, anonymous, and indistinguishable. They are completely disoriented, i.e., they share neither the coordinate system nor chirality. Additionally, they are opaque, so collinearities can hide important data for a proper computation. To tackle these system limitations, robots are equipped with a persistent light used to communicate and store a constant amount of information. For such a robot model, this paper presents a solution for UCF for each of the three scheduling modes usually studied in the literature: fully synchronous, semi-synchronous, and asynchronous. Regarding the time complexity, the proposed algorithms use a constant number of cycles (epochs) for fully synchronous (semi-synchronous) robots, and linearly, many epochs in the worst case for asynchronous robots.\",\"PeriodicalId\":212849,\"journal\":{\"name\":\"Italian Conference on Theoretical Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Conference on Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app13137991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Conference on Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app13137991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniform Circle Formation for Fully Semi-, and Asynchronous Opaque Robots with Lights
In the field of robotics, a lot of theoretical models have been settled to formalize multi-agent systems and design distributed algorithms for autonomous robots. Among the most investigated problems for such systems, the study of the Uniform Circle Formation (UCF problem earned a lot of attention for the properties of such a convenient disposition. Such a problem asks robots to move on the plane to form a regular polygon, running a deterministic and distributed algorithm by executing a sequence of look–compute–move cycles. This work aims to solve the UCF problem for a very restrictive model of robots: they are punctiform, anonymous, and indistinguishable. They are completely disoriented, i.e., they share neither the coordinate system nor chirality. Additionally, they are opaque, so collinearities can hide important data for a proper computation. To tackle these system limitations, robots are equipped with a persistent light used to communicate and store a constant amount of information. For such a robot model, this paper presents a solution for UCF for each of the three scheduling modes usually studied in the literature: fully synchronous, semi-synchronous, and asynchronous. Regarding the time complexity, the proposed algorithms use a constant number of cycles (epochs) for fully synchronous (semi-synchronous) robots, and linearly, many epochs in the worst case for asynchronous robots.