从高光谱图像中提取多重信息的军事目标检测

Chen Ke
{"title":"从高光谱图像中提取多重信息的军事目标检测","authors":"Chen Ke","doi":"10.1109/PIC.2017.8359527","DOIUrl":null,"url":null,"abstract":"Object detection is a very significant task for a huge range of applications. For example, the detection of military vehicles is very useful for the defense and intelligence. In recent years, hyperspectral imagery (HSI) which is generated by remote sensing systems can provide tremendous information about the spectral characteristics. Due to this characteristic, object detection using HSI becomes hot research topic. In this paper, we propose a strategy for military object detection by extracting multiple information from HSI. Firstly, we generate the superpixels from HSI by principle component analysis (PCA) and k-means clustering. Then, self-similarity method is used to calculate the correlation between each superpixel and the object spectral. At last, the shape information is extracted from the masses which have high correlation value and is used to detect the specific military objectives. Results from HSI demonstrate the benefits of the proposed strategy regarding its effectiveness at detecting specific objectives.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Military object detection using multiple information extracted from hyperspectral imagery\",\"authors\":\"Chen Ke\",\"doi\":\"10.1109/PIC.2017.8359527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is a very significant task for a huge range of applications. For example, the detection of military vehicles is very useful for the defense and intelligence. In recent years, hyperspectral imagery (HSI) which is generated by remote sensing systems can provide tremendous information about the spectral characteristics. Due to this characteristic, object detection using HSI becomes hot research topic. In this paper, we propose a strategy for military object detection by extracting multiple information from HSI. Firstly, we generate the superpixels from HSI by principle component analysis (PCA) and k-means clustering. Then, self-similarity method is used to calculate the correlation between each superpixel and the object spectral. At last, the shape information is extracted from the masses which have high correlation value and is used to detect the specific military objectives. Results from HSI demonstrate the benefits of the proposed strategy regarding its effectiveness at detecting specific objectives.\",\"PeriodicalId\":370588,\"journal\":{\"name\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2017.8359527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

目标检测是一项非常重要的任务,有着广泛的应用。例如,军用车辆的检测对国防和情报非常有用。近年来,由遥感系统生成的高光谱图像(HSI)可以提供大量的光谱特征信息。由于这一特点,利用HSI进行目标检测成为研究热点。本文提出了一种从HSI中提取多重信息的军事目标检测策略。首先,我们通过主成分分析(PCA)和k-means聚类从HSI中生成超像素。然后,利用自相似度方法计算每个超像素与目标光谱之间的相关性;最后,从具有高相关值的质量中提取形状信息,用于检测特定的军事目标。HSI的结果证明了所提出的策略在检测特定目标方面的有效性的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Military object detection using multiple information extracted from hyperspectral imagery
Object detection is a very significant task for a huge range of applications. For example, the detection of military vehicles is very useful for the defense and intelligence. In recent years, hyperspectral imagery (HSI) which is generated by remote sensing systems can provide tremendous information about the spectral characteristics. Due to this characteristic, object detection using HSI becomes hot research topic. In this paper, we propose a strategy for military object detection by extracting multiple information from HSI. Firstly, we generate the superpixels from HSI by principle component analysis (PCA) and k-means clustering. Then, self-similarity method is used to calculate the correlation between each superpixel and the object spectral. At last, the shape information is extracted from the masses which have high correlation value and is used to detect the specific military objectives. Results from HSI demonstrate the benefits of the proposed strategy regarding its effectiveness at detecting specific objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1