基于fpga的二次脉冲神经元模型实现方法

Xianghong Lin, Hang Lu, Xiaomei Pi, Xiangwen Wang
{"title":"基于fpga的二次脉冲神经元模型实现方法","authors":"Xianghong Lin, Hang Lu, Xiaomei Pi, Xiangwen Wang","doi":"10.1109/UEMCON51285.2020.9298029","DOIUrl":null,"url":null,"abstract":"In the innovative neural prostheses, the biological cell assemblies of the biological nervous system can be replaced by artificial organs, which makes the idea of dynamically interface biological neurons even more urgent. To mimic and investigate the activity of biological neural networks, many different architectures and technologies in the field of neuromorphic have been developed at present. When structuring simple neuron models, researchers use Field programmable gate arrays (FPGAs) to obtain better accuracy and real-time performance. This paper uses FPGAs to achieve the circuit design of the neuron model, such that based on the biologically plausible the quadratic spiking neuron model, can simulate the neuron spiking behaviors of thalamus neurons and hippocampal CA1 pyramidal neurons. After the FPGA hardware architecture of the neuron model is designed and implemented, this model can better simulate the spiking behaviors observed in biological neurons.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An FPGA-based Implementation Method for Quadratic Spiking Neuron Model\",\"authors\":\"Xianghong Lin, Hang Lu, Xiaomei Pi, Xiangwen Wang\",\"doi\":\"10.1109/UEMCON51285.2020.9298029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the innovative neural prostheses, the biological cell assemblies of the biological nervous system can be replaced by artificial organs, which makes the idea of dynamically interface biological neurons even more urgent. To mimic and investigate the activity of biological neural networks, many different architectures and technologies in the field of neuromorphic have been developed at present. When structuring simple neuron models, researchers use Field programmable gate arrays (FPGAs) to obtain better accuracy and real-time performance. This paper uses FPGAs to achieve the circuit design of the neuron model, such that based on the biologically plausible the quadratic spiking neuron model, can simulate the neuron spiking behaviors of thalamus neurons and hippocampal CA1 pyramidal neurons. After the FPGA hardware architecture of the neuron model is designed and implemented, this model can better simulate the spiking behaviors observed in biological neurons.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在创新的神经假体中,生物神经系统的生物细胞组件可以被人工器官取代,这使得动态界面生物神经元的想法变得更加迫切。为了模拟和研究生物神经网络的活动,目前在神经形态领域发展了许多不同的体系结构和技术。在构建简单的神经元模型时,研究人员使用现场可编程门阵列(fpga)来获得更好的准确性和实时性。本文利用fpga实现神经元模型的电路设计,使基于生物学上合理的二次尖峰神经元模型,可以模拟丘脑神经元和海马CA1锥体神经元的神经元尖峰行为。在设计并实现神经元模型的FPGA硬件架构后,该模型可以更好地模拟生物神经元中观察到的尖峰行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An FPGA-based Implementation Method for Quadratic Spiking Neuron Model
In the innovative neural prostheses, the biological cell assemblies of the biological nervous system can be replaced by artificial organs, which makes the idea of dynamically interface biological neurons even more urgent. To mimic and investigate the activity of biological neural networks, many different architectures and technologies in the field of neuromorphic have been developed at present. When structuring simple neuron models, researchers use Field programmable gate arrays (FPGAs) to obtain better accuracy and real-time performance. This paper uses FPGAs to achieve the circuit design of the neuron model, such that based on the biologically plausible the quadratic spiking neuron model, can simulate the neuron spiking behaviors of thalamus neurons and hippocampal CA1 pyramidal neurons. After the FPGA hardware architecture of the neuron model is designed and implemented, this model can better simulate the spiking behaviors observed in biological neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1