E. Chernokozhin, Iris Roger-Eitan, A. Gleizer, A. Boag
{"title":"球形充气弹性壳在流体中的共振声散射:理论与实验的比较","authors":"E. Chernokozhin, Iris Roger-Eitan, A. Gleizer, A. Boag","doi":"10.1109/comcas52219.2021.9629095","DOIUrl":null,"url":null,"abstract":"Theoretical model of acoustic scattering by submerged thin elastic air-filled spherical shells is compared with the results of direct measurements in an underwater test facility. Elastic resonances arising in elastic shells significantly affect the scattering, as demonstrated both theoretically and experimentally. Measurements were carried out in two frequency ranges. Two kinds of resonances—extensional and bending—were expected. In the low-frequency range, a predicted sharp drop in back scattering is observed, which corresponds to an extensional resonance mode. In the high frequency region, an expected wide resonance zone with enhanced scattering was found, although differing from the theoretically predicted distribution of resonances, which may be attributed to slight imperfection of the shell used in the experiment.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant Acoustic Scattering by Spherical Air-Filled Elastic Shells Submerged in a Fluid: Comparison of Theory and Experiment\",\"authors\":\"E. Chernokozhin, Iris Roger-Eitan, A. Gleizer, A. Boag\",\"doi\":\"10.1109/comcas52219.2021.9629095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical model of acoustic scattering by submerged thin elastic air-filled spherical shells is compared with the results of direct measurements in an underwater test facility. Elastic resonances arising in elastic shells significantly affect the scattering, as demonstrated both theoretically and experimentally. Measurements were carried out in two frequency ranges. Two kinds of resonances—extensional and bending—were expected. In the low-frequency range, a predicted sharp drop in back scattering is observed, which corresponds to an extensional resonance mode. In the high frequency region, an expected wide resonance zone with enhanced scattering was found, although differing from the theoretically predicted distribution of resonances, which may be attributed to slight imperfection of the shell used in the experiment.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonant Acoustic Scattering by Spherical Air-Filled Elastic Shells Submerged in a Fluid: Comparison of Theory and Experiment
Theoretical model of acoustic scattering by submerged thin elastic air-filled spherical shells is compared with the results of direct measurements in an underwater test facility. Elastic resonances arising in elastic shells significantly affect the scattering, as demonstrated both theoretically and experimentally. Measurements were carried out in two frequency ranges. Two kinds of resonances—extensional and bending—were expected. In the low-frequency range, a predicted sharp drop in back scattering is observed, which corresponds to an extensional resonance mode. In the high frequency region, an expected wide resonance zone with enhanced scattering was found, although differing from the theoretically predicted distribution of resonances, which may be attributed to slight imperfection of the shell used in the experiment.