KVASIR:用于计算机辅助胃肠疾病检测的多类图像数据集

Konstantin Pogorelov, K. Randel, C. Griwodz, S. Eskeland, T. Lange, Dag Johansen, C. Spampinato, Duc-Tien Dang-Nguyen, M. Lux, P. Schmidt, M. Riegler, P. Halvorsen
{"title":"KVASIR:用于计算机辅助胃肠疾病检测的多类图像数据集","authors":"Konstantin Pogorelov, K. Randel, C. Griwodz, S. Eskeland, T. Lange, Dag Johansen, C. Spampinato, Duc-Tien Dang-Nguyen, M. Lux, P. Schmidt, M. Riegler, P. Halvorsen","doi":"10.1145/3083187.3083212","DOIUrl":null,"url":null,"abstract":"Automatic detection of diseases by use of computers is an important, but still unexplored field of research. Such innovations may improve medical practice and refine health care systems all over the world. However, datasets containing medical images are hardly available, making reproducibility and comparison of approaches almost impossible. In this paper, we present KVASIR, a dataset containing images from inside the gastrointestinal (GI) tract. The collection of images are classified into three important anatomical landmarks and three clinically significant findings. In addition, it contains two categories of images related to endoscopic polyp removal. Sorting and annotation of the dataset is performed by medical doctors (experienced endoscopists). In this respect, KVASIR is important for research on both single- and multi-disease computer aided detection. By providing it, we invite and enable multimedia researcher into the medical domain of detection and retrieval.","PeriodicalId":123321,"journal":{"name":"Proceedings of the 8th ACM on Multimedia Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"356","resultStr":"{\"title\":\"KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection\",\"authors\":\"Konstantin Pogorelov, K. Randel, C. Griwodz, S. Eskeland, T. Lange, Dag Johansen, C. Spampinato, Duc-Tien Dang-Nguyen, M. Lux, P. Schmidt, M. Riegler, P. Halvorsen\",\"doi\":\"10.1145/3083187.3083212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of diseases by use of computers is an important, but still unexplored field of research. Such innovations may improve medical practice and refine health care systems all over the world. However, datasets containing medical images are hardly available, making reproducibility and comparison of approaches almost impossible. In this paper, we present KVASIR, a dataset containing images from inside the gastrointestinal (GI) tract. The collection of images are classified into three important anatomical landmarks and three clinically significant findings. In addition, it contains two categories of images related to endoscopic polyp removal. Sorting and annotation of the dataset is performed by medical doctors (experienced endoscopists). In this respect, KVASIR is important for research on both single- and multi-disease computer aided detection. By providing it, we invite and enable multimedia researcher into the medical domain of detection and retrieval.\",\"PeriodicalId\":123321,\"journal\":{\"name\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"356\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM on Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3083187.3083212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM on Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3083187.3083212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 356

摘要

利用计算机自动检测疾病是一个重要但尚未开发的研究领域。这些创新可能会改善全世界的医疗实践和完善卫生保健系统。然而,包含医学图像的数据集很难获得,使得方法的可重复性和比较几乎不可能。在本文中,我们提出了KVASIR,这是一个包含胃肠道内部图像的数据集。收集的图像分为三个重要的解剖标志和三个具有临床意义的发现。此外,它还包含两类与内镜息肉切除相关的图像。数据集的排序和注释由医生(经验丰富的内窥镜医师)执行。在这方面,KVASIR对于单疾病和多疾病计算机辅助检测的研究都是重要的。通过提供它,我们邀请并使多媒体研究人员进入医学检测和检索领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection
Automatic detection of diseases by use of computers is an important, but still unexplored field of research. Such innovations may improve medical practice and refine health care systems all over the world. However, datasets containing medical images are hardly available, making reproducibility and comparison of approaches almost impossible. In this paper, we present KVASIR, a dataset containing images from inside the gastrointestinal (GI) tract. The collection of images are classified into three important anatomical landmarks and three clinically significant findings. In addition, it contains two categories of images related to endoscopic polyp removal. Sorting and annotation of the dataset is performed by medical doctors (experienced endoscopists). In this respect, KVASIR is important for research on both single- and multi-disease computer aided detection. By providing it, we invite and enable multimedia researcher into the medical domain of detection and retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive Caching of Music Videos based on Audio Features, Mood, and Genre Video on Mobile CPU: UHD Video Parallel Decoding for Asymmetric Multicores Load Balancing of Multimedia Workloads for Energy Efficiency on the Tegra K1 Multicore Architecture Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark 360-Degree Video Head Movement Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1