{"title":"用于开关电容应用的低电压低功率快速沉降CMOS操作跨导放大器","authors":"M. Yavari, O. Shoaei","doi":"10.1109/LPE.2003.1231910","DOIUrl":null,"url":null,"abstract":"This paper presents a new fully differential operational transconductance amplifier (OTA) for low-voltage and fast-settling switched-capacitor circuits in digital CMOS technology. The proposed two-stage OTA is a hybrid class A/AB that combines a folded cascode as the first stage with active current mirrors as the second stage. It employs a hybrid cascode compensation scheme, merged Ahuja and improved Ahuja style compensations, for fast settling.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Low-voltage low-power fast-settling CMOS operational transconductance amplifiers for switched-capacitor applications\",\"authors\":\"M. Yavari, O. Shoaei\",\"doi\":\"10.1109/LPE.2003.1231910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new fully differential operational transconductance amplifier (OTA) for low-voltage and fast-settling switched-capacitor circuits in digital CMOS technology. The proposed two-stage OTA is a hybrid class A/AB that combines a folded cascode as the first stage with active current mirrors as the second stage. It employs a hybrid cascode compensation scheme, merged Ahuja and improved Ahuja style compensations, for fast settling.\",\"PeriodicalId\":355883,\"journal\":{\"name\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LPE.2003.1231910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-voltage low-power fast-settling CMOS operational transconductance amplifiers for switched-capacitor applications
This paper presents a new fully differential operational transconductance amplifier (OTA) for low-voltage and fast-settling switched-capacitor circuits in digital CMOS technology. The proposed two-stage OTA is a hybrid class A/AB that combines a folded cascode as the first stage with active current mirrors as the second stage. It employs a hybrid cascode compensation scheme, merged Ahuja and improved Ahuja style compensations, for fast settling.