晶体-二锂的高性能硬件实现

Luke Beckwith, D. Nguyen, K. Gaj
{"title":"晶体-二锂的高性能硬件实现","authors":"Luke Beckwith, D. Nguyen, K. Gaj","doi":"10.1109/ICFPT52863.2021.9609917","DOIUrl":null,"url":null,"abstract":"Many currently deployed public-key cryptosystems are based on the difficulty of the discrete logarithm and integer factorization problems. However, given an adequately sized quantum computer, these problems can be solved in polynomial time as a function of the key size. Due to the future threat of quantum computing to current cryptographic standards, alternative algorithms that remain secure under quantum computing are being evaluated for future use. One such algorithm is CRYSTALS-Dilithium, a lattice-based digital signature scheme, which is a finalist in the NIST Post Quantum Cryptography (PQC) competition. As a part of this evaluation, high-performance implementations of these algorithms must be investigated. This work presents a high-performance implementation of CRYSTALS-Dilithium targeting FPGAs. In particular, we present a design that achieves the best latency for an FPGA implementation to date. We also compare our results with the most-relevant previous work on hardware implementations of NIST Round 3 post-quantum digital signature candidates.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"High-Performance Hardware Implementation of CRYSTALS-Dilithium\",\"authors\":\"Luke Beckwith, D. Nguyen, K. Gaj\",\"doi\":\"10.1109/ICFPT52863.2021.9609917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many currently deployed public-key cryptosystems are based on the difficulty of the discrete logarithm and integer factorization problems. However, given an adequately sized quantum computer, these problems can be solved in polynomial time as a function of the key size. Due to the future threat of quantum computing to current cryptographic standards, alternative algorithms that remain secure under quantum computing are being evaluated for future use. One such algorithm is CRYSTALS-Dilithium, a lattice-based digital signature scheme, which is a finalist in the NIST Post Quantum Cryptography (PQC) competition. As a part of this evaluation, high-performance implementations of these algorithms must be investigated. This work presents a high-performance implementation of CRYSTALS-Dilithium targeting FPGAs. In particular, we present a design that achieves the best latency for an FPGA implementation to date. We also compare our results with the most-relevant previous work on hardware implementations of NIST Round 3 post-quantum digital signature candidates.\",\"PeriodicalId\":376220,\"journal\":{\"name\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT52863.2021.9609917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

目前部署的许多公钥密码系统都是基于离散对数和整数分解问题的难度。然而,给定一个足够大小的量子计算机,这些问题可以在多项式时间内作为密钥大小的函数来解决。由于量子计算对当前加密标准的未来威胁,正在评估在量子计算下保持安全的替代算法以供未来使用。其中一种算法是CRYSTALS-Dilithium,这是一种基于格子的数字签名方案,它是NIST后量子密码学(PQC)竞赛的决赛选手。作为评估的一部分,必须研究这些算法的高性能实现。这项工作提出了一个高性能的晶体-二锂靶向fpga的实现。特别是,我们提出了一种设计,可以实现迄今为止FPGA实现的最佳延迟。我们还将我们的结果与NIST第3轮后量子数字签名候选者的硬件实现的最相关的先前工作进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Performance Hardware Implementation of CRYSTALS-Dilithium
Many currently deployed public-key cryptosystems are based on the difficulty of the discrete logarithm and integer factorization problems. However, given an adequately sized quantum computer, these problems can be solved in polynomial time as a function of the key size. Due to the future threat of quantum computing to current cryptographic standards, alternative algorithms that remain secure under quantum computing are being evaluated for future use. One such algorithm is CRYSTALS-Dilithium, a lattice-based digital signature scheme, which is a finalist in the NIST Post Quantum Cryptography (PQC) competition. As a part of this evaluation, high-performance implementations of these algorithms must be investigated. This work presents a high-performance implementation of CRYSTALS-Dilithium targeting FPGAs. In particular, we present a design that achieves the best latency for an FPGA implementation to date. We also compare our results with the most-relevant previous work on hardware implementations of NIST Round 3 post-quantum digital signature candidates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1