{"title":"用于上肢可穿戴机器人的肌电运动识别优化","authors":"Daniel R. Freer, Jindong Liu, Guang-Zhong Yang","doi":"10.1109/BSN.2017.7936041","DOIUrl":null,"url":null,"abstract":"To functionally aid patients suffering from neurological disorder, a 3 degrees-of-freedom (DoF) upper limb wearable robot is presented (Fig. 1). In order to provide seamless user assistance, the intention of the wearer must be determined. As a sensing mechanism, electromyographic (EMG) signals have commonly been used to estimate human movement. In this study, the effectiveness of movement recognition using a generalized 8-port EMG sensor (Myo Armband) around the forearm was evaluated. Four fundamental movements of the arm (wrist flexion/extension and forearm pronation/supination) were classified using a neural network (NN) with a single hidden layer. The classification method was optimized through analysis of pre-processing algorithms and window size (0.25 to 1 second) to reduce computational expense and maintain classification accuracy. Through these accomplishments, significant groundwork has been provided for the development of a robust and non-invasive solution to tremor of the upper limb.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimization of EMG movement recognition for use in an upper limb wearable robot\",\"authors\":\"Daniel R. Freer, Jindong Liu, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2017.7936041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To functionally aid patients suffering from neurological disorder, a 3 degrees-of-freedom (DoF) upper limb wearable robot is presented (Fig. 1). In order to provide seamless user assistance, the intention of the wearer must be determined. As a sensing mechanism, electromyographic (EMG) signals have commonly been used to estimate human movement. In this study, the effectiveness of movement recognition using a generalized 8-port EMG sensor (Myo Armband) around the forearm was evaluated. Four fundamental movements of the arm (wrist flexion/extension and forearm pronation/supination) were classified using a neural network (NN) with a single hidden layer. The classification method was optimized through analysis of pre-processing algorithms and window size (0.25 to 1 second) to reduce computational expense and maintain classification accuracy. Through these accomplishments, significant groundwork has been provided for the development of a robust and non-invasive solution to tremor of the upper limb.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of EMG movement recognition for use in an upper limb wearable robot
To functionally aid patients suffering from neurological disorder, a 3 degrees-of-freedom (DoF) upper limb wearable robot is presented (Fig. 1). In order to provide seamless user assistance, the intention of the wearer must be determined. As a sensing mechanism, electromyographic (EMG) signals have commonly been used to estimate human movement. In this study, the effectiveness of movement recognition using a generalized 8-port EMG sensor (Myo Armband) around the forearm was evaluated. Four fundamental movements of the arm (wrist flexion/extension and forearm pronation/supination) were classified using a neural network (NN) with a single hidden layer. The classification method was optimized through analysis of pre-processing algorithms and window size (0.25 to 1 second) to reduce computational expense and maintain classification accuracy. Through these accomplishments, significant groundwork has been provided for the development of a robust and non-invasive solution to tremor of the upper limb.